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Abstract

In this thesis, we have studied the phenomenon of electromagnetically induced transparency
(EIT) using Rydberg levels of 87Rb. Rydberg levels are unique because they can be described
using a hydrogen-like model with the valence electron in an almost circular orbit. Atoms
in these levels have long lifetimes and high dipole moments compared to low-lying levels.
The values of the principal quantum number n is typically more than 30. The probe laser
is locked to the Fg = 2 → Fe = 3 hyperfine transition of the 780 nm D2 line of 87Rb.
The control laser couples transitions of the 5P3/2 state of 87Rb to a Rydberg level, and
has also been locked. The laser is at 480 nm and values of n up to 95 have been studied.
We have used Rydberg EIT to study two things—quadrature squeezing and the effect
of an external electromagnetic field. We have employed a balanced homodyne detection
scheme to look for probable squeezing of the probe beam emerging out of a Rydberg EIT
after passing through the so-called “Rydberg blockade”. In the shot-noise limited regime,
we have obtained preliminary results that show phase-dependent noise fluctuations. The
effect of an external electromagnetic field has also been used for preliminary studies on
microwave interferometry using Rydberg levels in an atom.
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1
Introduction

1.1 Thesis overview

This thesis comprises of the work done at the Johannes Gutenberg University, Mainz,
Germany in the group of Prof. Patrick Windpassinger from May 15-December 15, 2018,
and the work done at the Indian Institute of Science, Bangalore, India, in the group of Prof.
Vasant Natarajan from January 2-April 14, 2019. The problems I have worked on are
both based on atomic coherences in 87Rb, but the end results expected are quite different.
In Mainz, my work was focused on exploring the nonlinearities associated with Rydberg
atoms, obtained by excitation following an EIT pathway[1]. In particular, it was focused
on building a homodyne detector for measuring probable squeezed states of light obtained
from Rydberg atoms. In IISc, my work is focused on the more fundamental aspects of the
EIT phenomenon. In particular, we want to use the fact that a Rydberg atom is highly
sensitive to external electric fields and that the EIT peak splits when subjected to external
fields. Using the above observation, we want to carry out microwave interferometry using
Rydebrg EIT, a theoretical background of which has already been given [2].

The chapters are arranged to provide a brief but systematic theory. Chapter 2 deals
with two level systems, the density matrix formalism, Bloch equations and EIT. Some
portions of Chapter 2 have been inspired from previous bachelor and PhD theses from
the Natarajan lab at IISc, especially from the PhD thesis of Sumanta Khan [3] and the
bachelor thesis of Pritam Priyadarsi [4], and from some books[5][6]. This is a chapter that
serves as a foundation of all the atomic physics we have used in our experiments. Chapter
3 focuses on the quantisation of the EM field in free space, coherent and Fock states,
squeezed states, homodyne detection and nonlinearities arising from Rydberg blockade.
For the initial sections, I have followed a few textbooks in the field of quantum optics [7]
[8]. Basically, it is the foundation for everything related to quantum light that we have
used in our experiment. Again, I have tried to make it as succinct as possible. Then we
move on to chapter 4. It is a compilation of the experimental details and the results we
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Introduction

have got towards getting EIT signals at high n states, and towards obtaining squeezed light
from the Rydberg blockade and detecting it by a balanced homodyne detection scheme.

1.2 Applications of different n levels in Rydberg

atoms for microwave interferometry

The Rydberg EIT can be used for various kinds of precision experiments. Due to its
sensitivity to external electric fields, Kanhaiya Pandey et al have recently proposed
methods to utilise a loopy ladder type system (Fig. 1.1) to carry out Rydberg based
microwave interferometry [2]. The above figure has been taken from the aforementioned

Figure 1.1: Schematic of the proposed setup, employing four Rydberg levels, with
microwaves coupled to transitions between them.
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paper. For this method to work, one would need to couple three different microwave fields
to three different transitions between Rydberg levels, with control over the frequency and
phase of the microwaves. The initial Rydberg level would be coupled to laser fields by an
EIT scheme. The paper shows that if such a system can be acheieved, one can measure a
fourth unknown microwave field with unprecedented precision from the splittings of the
Rydberg EIT because of external fields. The four transitions are selected to complete the
loopy ladder system. The splitting would happen because of alternate EITATA... where
there would be alternate transparencies and absorptions.

1.3 Exploring nonlinearities and non-classical light

generation from the Rydberg blockade

Rydberg excitations in alkali atoms have been of considerable interest in the past decade
or so. Due to the electrons occupying high n states, Rydberg atoms have a very high
dipole moment between this excited electron and the positively charged nucleus. This
leads to very interesting effects arising from strong dipole-dipole interactions. Many
former papers have shown the formation of the Rydberg blockade due to Rydberg
excitations [9][10][11][12]. Due to Van der Waals potential arising from the Rydberg atom,
the surrounding atoms upto a certain radius of influence cannot show two photon
Rydberg excitations, or the Rydberg EIT transition to a Rydberg state from a first
excited state. This forms what are called “dark state polaritons”[13]. Various papers have
also explored the nonlinearities arising from Rydberg excitations, inside this Rydberg
blockade[10][11][12].

One way in which one can control the Rydberg transition and obtain tunable effects is
through the phenomenon of the Rydberg Electromagnetically Induced Transparency
(EIT). People have obtained Rydberg EIT in a vapour cell as early as 2007[14]. Since
then, many people have demonstrated the Rydberg EIT and utilised it for various
purposes. Recently, there is a drive towards exploring and exploiting Rydberg transitions
for quantum simulation. Rydberg EIT with laser cooled atoms trapped in a MOT have
proved to induce non-classical and non-linear effects like photon bunching and
anti-bunching [15]. The “Strong Interaction in Hollow Core Fibers” group in Mainz
intends to utilise such non-classical effects from the Rydberg EIT for quantum simulation
as well. In order to do so, the SIF group uses a hollow core fiber as a confining medium
for atom-light interactions. In this setup, Rb atoms are first trapped in a 2D MOT. Then
a pushing beam is used, and the cooled atoms (temperature is a few K), after being
trapped in a 3D MOT at the mouth of the fiber, are loaded into a dipole trap [16]
conveyer belt [17] [18] [19]. For the conveyer belt, two beams are aligned with a slight
frequency detuning between them, from the two ends of the HCF. This creates an optical
lattice, famously known as the ‘pancake lattice’, and the relative detuning can be
controlled to move the optical lattice in a certain direction with a certain speed. Rydberg
EIT inside the hollow-core photonic crystal fiber (HCPCF) has already been
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Figure 1.2: Schematic of the hollow core fiber setup in Mainz.

demonstrated for the first time ever in our lab by my seniors [20]. The schematic is shown
above in Fig. 1.2 from the cited paper. The Rydberg EIT creates Rydberg polaritons,
which are light-matter quasiparticles with a certain blockade radius, and do not absorb
photons of the control beam which leads to the Rydberg transition, in the blockade
volume. The lab intends to use the non-linear nature of the Rydberg EIT to observe
photon-photon interactions and non-classical states of light, and later use them for
quantum information. Given this general long-term goal, it is prudent that one
investigates and detects non-classical light states from the system. Given the non-linear
nature of the phenomenon, we expect to detect some squeezing of the emerging probe
beam from the Rydberg EIT medium. In order to detect so, it was required that one
builds a homodyne detector[21], primarily to detect squeezing from Rydberg EIT, and for
quantum state tomography of Rydberg EIT in general. This was what my project was all
about. I built a homodyne detector for detection of squeezing, more specifically squeezing
of the EIT probe beam, in thermal Rb vapour, and then I characterised the setup.
Although squeezed light has been used in association with EIT for various applications
[22]][23][24], and squeezing has been produced from atoms by nonlinear processes like
4-wave mixing [25], to the best of my knowledge, Rydberg BLockade-induced squeezing
has never been reported. We have obtained preliminary signs of phase dependent
fluctuations of the shot noise level of the probe beam emerging from a Rydberg EIT.
Whether this is squeezing indeed or not, is under further investigation.
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2
Atomic coherences and quantum interference

In this chapter, we will mostly use a semi-classical treatment of atom-light interactions.
We treat the light field as a classical electromagnetic field and the atom as a quantum
system with discrete energy levels. I shall not digress into Time-Dependent Perturbation
Theory but take the liberty to use techniques and results that arise from the theory in my
thesis, wherever required.

2.1 Density matrix formalism and equations of

motion of the density matrix

A very common formalism to analyse an atomic system is the density matrix formalism.
Ideally, the complete description of an atomic state is given by the wavefunction |ψ〉.
However, |ψ〉 can’t be measured directly in an experiment. The average value of a
measurement usually yields an expectation value of an observable Â (which is usually a
Hermitian operator) as

〈Â〉 = 〈ψ| Â |ψ〉 (2.1)

where |ψ〉 is the normalised wave function. Define a density operator ρ for a pure state as

ρ = |ψ〉 〈ψ| (2.2)

For an n-dimensional Hilbert space, the density matrix for a state with basis expansion as
|ψ〉 =

∑n
i=1 ci |xi〉 is given by

ρij = 〈xi| ρ |xj〉 (2.3)

and the normalisation for the wave function yields Tr(ρ) = 1. The diagonal terms give
the probability of an atom to be in some state |xi〉 while the off-diagonal terms are

19



Atomic coherences and quantum interference

called coherences. Coherences represent the relative phase-differences between the various
off-diagonal entries. Now, we can write

〈Â〉 =
∑
i,j

c∗i cj 〈xi|A |xj〉 =
∑
i,j

ρjiAij =
∑
j

(ρA)jj = Tr(ρA) (2.4)

For a mixed state, the probabilities of being in a certain state comes into the picture and
the density matrix equations, especially the trace, can be used as a test for determining
whether a state is pure or mixed.

Our main target in this section is to arrive at a tool for understanding the time evolution
of a density matrix and for providing a theoretical framework for interesting effects like
EIT and EIA that we observe in atoms interacting with a laser radiation. For this, let us
first look at the time evolution of a density matrix and then try to relate something as
abstract as a density matrix to something which influences our experimental
measurements, like susceptibility of a medium.

A density matrix follows the below time evolution in terms of the Hamiltonian, which is
something we need to first define for analysis of any atomic system

ρ̇ = − i

~
[H, ρ] (2.5)

This equation is called the Liouville equation. However, this is rather incomplete in
the sense that we have not considered any decoherence terms in this expression, or any
terms that actually correspond to a physical atomic process. For this, we define two
matrices, namely the relaxation matrix and the repopulation matrix to account for
atomic decay rates and repopulation rates, which arise to conserve the number of atoms
while being subjected to some decay process due to various interactions with the external
environment. The decay might occur due to various reasons like spontaneous emission or
atomic collisions, which corroborates with the fact that atomic transitions have a finite
lifetime. The relaxation matrix Γ is given by

〈xi|Γ |xj〉 = Γiδij (2.6)

Note that the above defined matrix is completely phenomenological, as in, the explicit
expression of the terms come from experimental observations. For every relaxation process,
there has to be a repopulation term, to make sure that the total number of atoms is
conserved. Let this be given by the repopulation matrix (ρ̇)repop = Λ. So, the final Liouville
Equation for density matrix time evolution becomes

ρ̇ = − i

~
[H, ρ]− 1

2
{Γ, ρ}+ Λ (2.7)

where {Γ, ρ} is the anticommutator.
Then the ij-th matrix element of the Liouville equation becomes

ρ̇ij = − i

~
∑
k

(Hikρkj − ρikHkj)−
1

2

∑
k

(Γikρkj + ρikΓkj) + Λij (2.8)
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Atomic coherences and quantum interference

Now let us try to relate the density matrix with the polarisation and susceptibility of the
medium. As we know, when light propagates through a medium, it polarises the atoms in
the medium. The polarisation P can be found from the density matrix as the expectation
value of the dipole operator d.

P = nTr(ρd) = n
∑
i,j

ρjidij (2.9)

Polarisation P in terms of the susceptibility χ of the medium can be written as

P =
1

2
ε0ε(χ(ω) + c.c.) (2.10)

where ε is the electric field. Then, we can relate χ to the density matrix as

χ =
2ndij
ε0ε

ρji (2.11)

2.2 Optical Bloch equations and two-level systems

We can express the wave function for two levels |1〉 and |2〉 as

|ψ〉 = c1(t) |1〉+ c2(t) |2〉 e−iω0t (2.12)

After solving the Schrödinger’s equation for a two-level system, and doing the dipole
approximation and the Rotating Wave Approximation, we get-

i~ ˙c1(t) = c2(t)~Ω
ei∆t

2
(2.13)

i~ ˙c2(t) = c1(t)~Ω
e−i∆t

2
(2.14)

Where ∆ = ω − ω0 is called the detuning. We define the Rabi frequency as follows

Ω =
E0

~
〈2| ~µ.Ê |1〉 (2.15)

If µ12 is the dipole moment of a certain transition, we can write the Rabi frequency as

Ω =
E0

~
µ12 (2.16)

Equations (2.13) and (2.14) indicate that the ground state and the excited state populations
will continuously change and some sort of population oscillation will set in when a light field
is made incident on atoms. Differentiating equations (2.13) and (2.14) and substituting
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the initial equations (2.13) and (2.14) in the obtained 2nd order differential equation gives
two uncoupled 2nd order differential equations as below

d2c1

dt2
− i∆

dc1

dt
+

Ω2

4
c1 = 0 (2.17)

d2c2

dt2
+ i∆

dc2

dt
+

Ω2

4
c2 = 0 (2.18)

We assume an oscillatory solution to these and obtain

|c2(t)|2 =

(
Ω

W

)2

sin2[Wt/2] (2.19)

where W =
√

Ω2 + ∆2. These oscillations are called Rabi oscillations. When the applied
laser field is on resonance with the exact transition frequency, ∆ is zero. Then the transition
probability is given by

|c2(t)|2 = sin2[Ωt/2] (2.20)

From this expression it is clear that a “π pulse”, that is, a temporal pulse of duration π/Ω
and frequency same as resonant frequency of transition, will lead to the atom ending up
in the state |2〉 after being subjected to the pulse. Thus, this is like a swapping of the
ground and excited states. A “π/2 pulse” will, on the other hand, prepare the atom in a
superposition state with equal amplitudes of the ground and excited states.

After this short discourse on two-level systems, let me just briefly mention what are the
Optical Bloch Equations, which are extensively used in the analysis of any system where
quantum interference plays a dominant role, like EIT and EIA processes, which form a
central part of my experiments. The density matrix for a two-level atomic system is given
by

ρ =

[
ρ11 ρ12

ρ21 ρ22

]
(2.21)

Assume that each level undergoes relaxation at a rate γ due to the exit of atoms from the
light beam (depends on the beam width and the velocity of atoms at that temperature).
In addition, the upper state |2〉 undergoes spontaneous decay at a rate Γ2. The relaxation
matrix is then given by

Γ =

[
γ 0
0 γ + Γ2

]
(2.22)

To conserve the total population, the repopulation matrix becomes

Λ = (γ + Γ2ρ22)

[
1 0
0 0

]
(2.23)

22
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Under Rotating Wave Approximation (RWA), we can write the Hamiltonian for a 2-level
system as

H̃ ' ~
2

[
−∆ Ω12

Ω21 ∆

]
(2.24)

Now, using Eqns. (2.21)-(2.24), and using the Liouville Equation, we get what are called
the Optical Bloch Equations.

˙ρ11 =
i

2
(Ω21ρ12 − Ω12ρ21 − γρ11 + Γ2ρ22 + γ

˙ρ22 =
i

2
(Ω12ρ21 − Ω21ρ12 − (γ + Γ2)ρ22

˙ρ12 = −
(
γ +

Γ2

2
− iδ

)
ρ12 +

i

2
Ω12(ρ11 − ρ22)

˙ρ21 = −
(
γ +

Γ2

2
+ iδ

)
ρ12 −

i

2
Ω12(ρ11 − ρ22)

(2.25)

These equations are exactly the same as the Liouville Equation, but just with each element
of the matrices written in an equation form, following Eqn. (2.8). A slightly different but
more compact representation of the density matrix time evolution is also given by the
Lindblad Equation [26].

2.3 AC Stark shift, dressed state picture and

hyperfine structure

We can find the energy eigenstates of the Hamiltonian given in Eq. (2.24) and subsequently
the energy eigenvalues in the uncoupled energy basis by diagonalising the Hamiltonian.
These are given by

E± = ±~
2

√
|Ω12|2 + ∆2 (2.26)

The eigenvectors are given by an effective rotation of the uncoupled basis states |2〉 and
|1〉 as,[

|+〉
|−〉

]
=

[
sin θ cos θ
cos θ − sin θ

] [
|1〉
|2〉

]
(2.27)

where |±〉 are called dressed states—eigenstates of the combined light-atom system—and
the Stückelberg angle θ defined as

tan 2θ =
Ω12

∆
(0 6 θ < π/2) (2.28)
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The energy shift, called the AC Stark Shift, far from resonance, that is, Ω12 << ∆, is
given by

∆E =
~Ω2

4∆
(2.29)

Now I shall very briefly describe the hyperfine structure of atoms and then we shall
discuss in some detail the phenomenon of EIT.

The magnetic moment of nucleus associated with nuclear spin I is given by

µI = gIµNI/~ (2.30)

where gI is the (dimensionless) nuclear Lande factor specific to the particular nucleus and
µN is nuclear magneton given by

µN =
e~

2mpc
=

µB
1836

≈ 762HzG−1 (2.31)

where µB= 1.4 MHz/G is the Bohr magneton. Clearly, the nucleus-electron interaction is
very weak compared to the electron-electron Coulomb interaction. This interaction causes
the fine structure levels to split by a very small magnitude to form Hyperfine levels.

As the nuclear magnetic moment couples with the magnetic field, the nuclear spin also
couples to the total electronic angular momentum to give the total angular momentum F .

F = I + J (2.32)

F can take the values

|J − I| ≤ F ≤ J + I (2.33)

The hyperfine interaction energy is given by the magnetic coupling between I and J as

Whfs = −µI ·BJ (2.34)

Of course, this energy splitting is less than the fine structure, but it is usually observable
for isotopes that have a nuclear spin. Now to calculate the hyperfine structure energy, we
have to calculate BJ . It is usually proportional to J and is given by

BJ =
a

µN
J/~ (2.35)

So the hyperfine structure energy is

Whfs = AI.J/~2 (2.36)
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where A is the magnetic dipole hyperfine coupling constant. The energy shift for a state
with quantum numbers F , I , and J is

∆Ehfs = A
F (F + 1)− I(I + 1)− J(J + 1)

2
(2.37)

Hyperfine energy can be expanded in a multipole series with progressively smaller correction
as

W total
hfs = AK1 +BK2 + CK3 +DK4 + . . . (2.38)

where B is the electric quadrupole hyperfine coupling constant, C is the magnetic octupole
hyperfine coupling constant, D is the electric hexadecapole hyperfine coupling constant,
and so on. K’s are factors that depend on the quantum numbers of the state. The
lowest term of the series are dominant which are magnetic dipole and electric quadrupole
interactions between nucleus and the electrons. The dipole matrix elements between
hyperfine levels can be calculated by using Wigner 3− j symbol (written within round
brackets) or equivalently Clebsch-Gordan coefficient and Wigner 6− j symbol (written
within curly brackets) as follows

〈
ξ′F ′m′F

∣∣d1
±1

∣∣ ξFmF

〉
= (−1)F

′−m′F

(
F ′ 1 F
−m′F ±1 mF

)
×
〈
ξ′F ′

∥∥d1
∥∥ ξF〉

= (−1)F
′−m′F

(
F ′ ±1 mF

)
× (−1)(J ′+I+F+1)

×
√

(2F ′ + 1) (2F + 1)
{
J ′ F ′ I

} 〈
J ′
∥∥d1
∥∥ J〉

(2.39)

The double bar represents a reduced matrix element.

2.4 Electromagnetically induced transparency

EIT is caused by the quantum interference of excitation pathways in a certain atomic
configuration. The laser field incident on the atoms give rise to coherence of the atomic
states, and the lasers can be used to control the optical response of the medium. So, there
are many interesting effects that arise like EIT, EIA, CPT, LWI, STIRAP, etc. We shall
focus on EIT in this section, which is what most of our work is based on. EIT has many
applications as it effects in a highly nonlinear susceptibility in the transparency window,
and also shows a steep dispersion. This makes it an ideal candidate for experiments on
slow light, light storage, precision interferometry, and, as has been discussed in a later
part of the thesis, on utilization of the induced nonlinearity.

EIT can be described experimentally as a process in which a strong control beam and a
weak probe beam overlap with each other in an atomic medium (might be a vapour cell or
a cold atom system), and the frequencies are scanned around two different transitions
such that they satisfy a certain configuration [27]. When the detunings of both the lasers
is zero from the resonance, we see a peak in transmission at the line center. Let the
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Figure 2.1: A typical EIT process

control field be at a frequency of ωc, detuning δc and Rabi frequency of Ωc. Similarly, let
the probe field have frequency of ωp, detuning δp and Rabi frequency of Ωp. Let level |i〉
have a decay rate Γi. We assume the ground state will have decay rate zero.

The control field dresses the |2〉 and |3〉 levels, and creates some new levels |+〉 and |−〉
[28]. These states |+〉 and |−〉 are called Autler-Townes Doublets. Now, let us look at
EIT mathematically, using all the tools we have developed upto this point. Let the probe
and control fields be given by

Ep(t) = E0,p cos (ωpt) ε̂p

Ec(t) = E0,c cos (ωct) ε̂c
(2.40)

The total Hamiltonian in the RWA for three-level Λ-type system is given by

H =
~
2

 0 Ωp 0
Ω∗p 2δp Ω∗c
0 Ωc 2 (δp − δc)

 (2.41)

where Ωp = −E0,p 〈1 |er · ε̂p| 2〉 /~, Ωc = −ε0,c 〈3| er.ε̂c |2〉 /~. For both the frequencies on
resonance, we can define the “mixing angles” θ and φ as

tan θ =
Ωp

Ωc

tan 2φ =

√
|Ωp|2 + |Ωc|2

δ

(2.42)

We solve the equation H |i〉 = λ |i〉 for probe at a detuning δ and δp = δc and get the
following eigenvalues of the Hamiltonian

λ0 = 0

λ± =
~
2

[
δ ±

√
δ2 + |Ωp|2 + |Ωc|2

]
(2.43)
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The corresponding eigenstates in terms of the atomic state |i〉 can be written as

|0〉 = cos θ|1〉 − sin θ|3〉
|+〉 = sin θ sinφ|1〉+ cosφ|2〉+ cos θ sinφ|3〉
|−〉 = sin θ cosφ|1〉 − sinφ|2〉+ cos θ cosφ|3〉

(2.44)

Notice that there are no terms involving |2〉 in the expression of |0〉. This is called a dark
state as there cannot be a transition to |2〉 when this state is formed and consequently no
decay by spontaneous emission. For a weak probe, we can do the approximation,

Ωp � Ωc ⇒
Ωp

Ωc

� 1⇒ tan θ � 1⇒ sin θ → 0, cos θ → 1 (2.45)

Now, |0〉 = |1〉 and tan 2φ→∞⇒ φ→ π/4. Then the dressed states are given by

|+〉 =
1√
2

(|3〉+ |2〉)

|−〉 =
1√
2

(|3〉 − |2〉)
(2.46)

From Eqn (2.11), we can calculate the susceptibility of the medium in terms of the

Figure 2.2: a) Ladder, b) lambda and c) vee configurations

density matrix ρ12 and show that the medium is transparent for δp = δc = 0. The
imaginary part of the susceptibility, Im(χ) gives the absorption of the medium and at
zero detuning for both probe and control, we get a dip in the absorption. The real part of
the susceptibility, Re(χ) gives the dispersion of the medium. Depending on the slope of
the dispersion curve at zero detuning, we can obtain slow or fast light from EIT medium,
which lead to a whole range of new experiments. I shall not, however, elaborate on this.
Let us now very briefly derive the EIT parameters, that is, the density matrices
corresponding to the EIT transition for Λ, Ξ and Vee systems. We are particularly
interested in the Ladder type EIT to a Rydberg State, which is called the Rydberg EIT.
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Lambda system EIT

Here the relaxation matrix is given by

Γ =

 γ 0 0
0 γ + Γ2 0
0 0 γ

 (2.47)

Ground states get repopulated due to spontaneous decay from |2〉 as well as due to transit
relaxation. Assuming atomic polarization will get completely destroyed after wall collisions,
atoms will re-enter the beam with populations in the ground states only. So, repopulation
matrix takes the form

Λ =
γ + Γ2ρ22

2

 1 0 0
0 0 0
0 0 1

 (2.48)

Then the Bloch Equations become

ρ̇11 = −γρ11 +
γ

2
+

Γ2

2
ρ22 +

i

2

(
Ω∗pρ12 − Ωpρ21

)
ρ̇22 = − (γ + Γ2) ρ22 +

i

2

(
Ωpρ21 − Ω∗pρ12

)
+

i

2
(Ωcρ23 − Ω∗cρ32)

ρ̇33 = −γρ33 +
γ

2
+

Γ2

2
ρ22 +

i

2
(Ω∗cρ32 − Ωcρ23)

ρ̇12 = ρ̇∗21 =

(
−γ − Γ2

2
+ iδp

)
ρ12 +

i

2
Ωp (ρ11 − ρ22) +

i

2
Ωcρ13

ρ̇13 = ρ̇∗31 = (−γ + i (δp − δc)) ρ13 +
i

2
(Ω∗cρ12 − Ωpρ23)

ρ̇23 = ρ̇∗32 =

(
−γ − Γ2

2
− iδc

)
ρ23 +

i

2
Ω∗c (ρ22 − ρ33)− i

2
Ω∗pρ13

(2.49)

From Eqn (2.11), we can calculate the susceptibility of the medium in terms of the density
matrix ρ12 and show that the medium is transparent for δp = δc = 0. For a non zero probe
detuning, an EIT is usually formed by the probe Raman level and the control in resonance
with the Raman level and the second excited state. This has been used in our experiment
as well, while setting AOM shift values. The density matrix corresponding to the ground
and doubly excited state is given by

ρ12 =
iΩp/2(

Γ2

2
− iδp

)
+
i |Ωc|2 /4
(δp − δc)

(2.50)

Now, before we move on to the ladder system, let us talk about Vee system EIT.

Vee system EIT

28
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Here, |2〉 is the common ground state and |1〉 and |3〉 are the excited states. The total
Hamiltonian in RWA is given by

H =
~
2

 2δp Ω∗p 0
Ωp 0 Ωc

0 Ω∗c 2δc

 (2.51)

The relaxation matrix is given by

Γ =

 γ + Γ1 0 0
0 γ 0
0 0 γ + Γ3

 (2.52)

Repopulation matrix is given by

Λ =

 0 0 0
0 γ + Γ1ρ11 + Γ3ρ33 0
0 0 0

 (2.53)

After solving the Bloch Equations we get

ρ33 =

|Ωc|2

Γ2
3

1 +
2 |Ωc|2

Γ2
3

+
4δ2
c

Γ2
3

(2.54)

However, the population in state |1〉 can be approximated to zero. So, in V system, we
have, ρ11 ' 0, ρ22 6= 0, ρ33 6= 0 such that ρ11 + ρ22 + ρ33 = 1. The steady state solution for
ρ21 (with γ = 0) is

ρ21 =

iΩp

(Γ2
3 + 4δ2

c + |Ωc|2
)
−

|Ωc|2
(

Γ3

2
− iδc

)
(

Γ1 + Γ3

2
+ i (δc − δp)

)


2
(
Γ2

3 + 4δ2
c + 2 |Ωc|2

)Γ1

2
− iδp +

|Ωc|2 /4(
Γ1 + Γ3

2
+ i (δc − δp)

)


(2.55)

Now we move on to the Ladder system. Before we do, let us have a look at the 87Rb
energy levels (Fig. 2.3).

Ladder system EIT

Let us start as before by writing down the total Hamiltonian in the RWA

H =
~
2

 0 Ωp 0
Ω∗p 2δp Ωc

0 Ω∗c 2 (δp + δc)

 (2.56)
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Figure 2.3: 87Rb energy levels

The relaxation matrix is of the form

Γ =

 γ 0 0
0 γ + Γ2 0
0 0 γ + Γ3

 (2.57)

Ground state |1〉 and first excited state |2〉 will get repopulated due to spontaneous decay
from state |2〉 and |3〉 respectively. Transit relaxation rate γ will repopulate the ground
states |1〉 only. So, the repopulation matrix can be written as

Λ =

 γ + Γ2ρ22 0 0
0 Γ3ρ33 0
0 0 0

 (2.58)
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Figure 2.4: Rydberg EIT—a ladder type EIT

Now, the density matrix equations are

ρ̇11 = −γρ11 + γ + Γ2ρ22 +
1

2

(
Ω∗pρ12 − Ωpρ21

)
ρ̇22 = − (γ + Γ2) ρ22 + Γ3ρ33 +

i

2

(
Ωpρ21 − Ω∗pρ12

)
+

i

2
(Ω∗cρ23 − Ωcρ32)

ρ̇33 = − (γ + Γ3) ρ33 +
i

2
(Ωcρ32 − Ω∗cρ23)

ρ̇12 = ρ̇∗21 =

(
−γ − Γ2

2
+ iδp

)
ρ12 +

i

2
Ωp (ρ11 − ρ22) +

i

2
Ω∗cρ13

ρ̇13 = ρ̇∗31 =

(
−γ − Γ3

2
+ i (δp + δc)

)
ρ13 +

i

2
(Ωcρ12 − Ωpρ23)

ρ̇23 = ρ̇∗32 =

(
−γ − Γ2 + Γ3

2
+ iδc

)
ρ23 +

i

2
Ωc (ρ22 − ρ33)− i

2
Ω∗pρ13

(2.59)
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We find the steady state solution for ρ12 as

ρ12 =
iΩp/2(

Γ2

2
− iδp

)
+

|Ωc|2 /4(
Γ3

2
− i (δp + δc)

) (2.60)

Taking into account the velocity of the atoms, we get the expression for susceptibility of
the medium as

χ(v)dv = −i
3λ2

p

4π
γ2N(v)dv [γ2 − i (∆p − kp · v) +

(Ωc/2)2

γ3 − i (∆p + ∆c − (kp + kc) · v)
]−1

(2.61)

One can find that for zero detuning of the probe and control, one gets a dip in the Im(χ),
which gives the absorption. As shown in Fig. (2.4), we are performing experiments with 87

Rb, and the corresponding transitions for the Rydberg EIT are shown, along with rough
values of the frequencies of the transitions. Depending on the n level, we get various
interesting features, which shall be elaborated in the Results and Analysis Section.
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3
Squeezed states from the Rydberg blockade

In this chapter, a brief theory of squeezed states of light will be introduced. I shall start by
quantising the electromagnetic field and expressing it as a multi mode quantum harmonic
oscillator. Then I go on to describe coherent states, Fock states and squeezed states.
Then we briefly describe the theory and the working principles of the balanced homodyne
detection scheme for detecting squeezing in a certain quadrature. I end the chapter with a
short review on nonlinearities arising from the Rydberg Blockade. I also discuss how these
nonlinearities can be exploited for quantum optics and quantum information, and how the
Rydberg blockade can be a probable source for squeezed light.

3.1 Quantising the electromagnetic field in free space

Consider an EM wave in a resonating cavity of length L and volume V. Let the electric
field associated with it oscillate in the x direction. The normal modes of the cavity can
then be expressed as

Ex(z, t) =
∑
s

Asqs(t) sin(ksz)x̂ (3.1)

where s is a positive integer. Here, qs(t), ks = s(π/L), νs = s(c/2L) are the normal mode

amplitude, wave-vectors and eigen-frequencies of the electric field. As =

√
2ν2

sms

ε0V
and

ms is a constant with dimension of mass. These modes are the Fourier expansion of the
normal mode frequencies for this cavity, and are essentially the solutions of the Helmholtz
equation ((∇)2 + k2)A = 0) with the boundary conditions- E(z=0,t)=E(z=L,t)=0. Now,

33



Squeezed states from the Rydberg blockade

using Maxwell’s equations,

∇× ~H = ε0
∂ ~E

∂t
(3.2)

We find the magnetic field as

Hy(z, t) =
∑
s

ε0As
˙qs(t)

ks
cos(ksz)ŷ (3.3)

The classical Hamiltonian is given by

H =
1

2

∫
V

[ε0E
2
x + µ0H

2
y ]dV (3.4)

Naturally, the integration is over the entire cavity volume. Now we need to simplify this
and quantise the field. Quantisation conditions, in general, are usually invoked from
the generalised position and momentum commutation relation. Simplification gives the
Hamiltonian as

H =
1

2

∑
s

[msv
2
sq

2
s +

p2
s

ms

] (3.5)

where ps and qs are the canonical momentum and postion of the sth mode of the field. Now
we quantise the field by identifying p̂s and q̂s as operators and they follow the commutation
relations

[q̂s, q̂s′ ] = [p̂s, p̂s′ ] = 0 (3.6)

[q̂s, p̂s′ ] = i~δs,s′ (3.7)

Define ladder operator a and a† as

âs =
1√

2~msνs
[msνsq̂s + ip̂s]e

iνst (3.8)

âs
† =

1√
2~msνs

[msνsq̂s − ip̂s]e
−iνst (3.9)

They have the commutation relations

[âs, âs′ ] = [âs
†, âs′

+] = 0 (3.10)
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[âs, âs′
+] = δs,s′ (3.11)

Now, in terms of these ladder operators, the Hamiltonian undergoes a transformation from
one set of coordinates to another, and we can express the Hamiltonian as

H =
∑
s

hνs

[
âs
†âs +

1

2

]
(3.12)

Now we proceed to actually write down the quantised ~E and ~H fields. For that, we first
find the conjugate position and momentum in terms of the ladder operators. Our fields
have already been expressed in terms of these. We want to find the solutions of the wave
equation in free-space and we want to express our wave as a travelling wave. A direct
simplification of the above equations will give us standing wave solutions (in terms of sine
and cosine of the wave number kj for a field summed over the modes represented by j).

We break these down in terms of exponentials. In terms of ladder operators, the ~E and ~H
fields can be expressed as

Ex(z, t) =
∑
j

Cj[âje
−iνjt + âj

+eiνjt]

(
eikjz − e−ikjz

2i

)
(3.13)

Hy(z, t) =
∑
j

iε0cCj[âj
+eiνjt − âje−iνjt]

(
eikjz + e−ikjz

2

)
(3.14)

where Cj =

√
hνj
ε0V

=

√
h

2mjνjAj
A simple expansion of the expression for the fields will

show that they contain a term with a positive phase velocity, something we can see in
experiments, and a term with a negative phase velocity, which is unrealistic. We restrict
ourselves to the realistic solutions.We also generalise our expression to any travelling EM
wave. For that, we replace z by r and kj by k, although we still sum over the modes
represented by j. We denote the â† terms by a Hermitian Conjugate (H.c). Then the final
expression for our quantised fields are-

Ex(z, t) = − i

2

∑
j

Cj[âje
−iνjt+i~k.~r +H.c]q̂k (3.15)

Hy(z, t) = − i

2

∑
j

iεcCj[âje
−iνjt+i~k.~r −H.c]p̂k (3.16)

where q̂k is the unit vector for alignment of the polarisation vector for the ~E-field, and the
polarisation vector for the ~H-field is along unit vector p̂k = ~k × q̂k.
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We define the number operator n̂k as n̂k = âk
+âk.The expectation value of n̂k is the average

number of photons in the kth mode. This is the quantum optics analogue of intensity. The
expression for the Hamiltonian (eqn. 2.12) physically means that a mutlimode EM field
can be represented as an infinite number of uncoupled quantum harmonic oscillators in a

Hilbert space, each with some number of photons, corresponding to energy ~ω(n+
1

2
) for

a mode with n photons. This brings us to the idea of a photon number state, or a Fock
state, which we shall formally introduce in the next section.

3.2 Fock states, coherent states and uncertainty of

conjugate variables

The ladder operators enable us to define states with increasing energy levels given by the
number of photons in a certain state. As already mentioned, these states are called photon
number states, or Fock states. Let us denote a single mode number state by |n〉. These
are, by definition, eigenstates of the Hamiltonian and we can write

Ĥ |n〉 = E |n〉 =

(
n+

1

2

)
~ω |n〉 (3.17)

where 〈n|n′〉 = δnn′ . We define the creation operator, or rather, name one of the ladder
operators the creation operator, with the property

â† |n〉 =
√
n+ 1 |n+ 1〉 (3.18)

The annihilation operator is likewise defined as

â |n〉 =
√
n |n− 1〉 (3.19)

The ground state |0〉 is the state where the system hasn’t been excited by any quanta of
light, or rather, a state which contains no photons. This is termed the vacuum state
and any number state |n〉 can be built up from the vacuum state by repeated appliction
of the creation operator, so that we have

|n〉 =
1√
n!

(â†)n |0〉 (3.20)

We define the vacuum state in such a way such that â |0〉 = 0. As is understood, contrary
to classical field theory, there exists a vacuum fluctuation of the quantised EM field. The

average value of this fluctuation is
1

2
~ω.

Define a coherent state as an eigenstate of the annihilation operator such that
â |α〉 = α |α〉. Of course, this can be expressed in terms of the number state as
|α〉 =

∑
nCn |n〉 where Cn = 〈n|α〉. Now,

â |α〉 =
∑
n

αCn |n〉 =
∑
n

Cn
√
n |n− 1〉 (3.21)
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Equating the terms for the same state, we get Cn =
αn√
n!
C0 and so we can write the

coherent state in terms of the number state as

|α〉 =
∑
n

αn√
n!
C0 |n〉 (3.22)

We normalise this and find |C0| = e−|α|
2/2. Then,

|α〉 = e−|α|
2/2
∑
n

αn√
n!
|n〉 (3.23)

In terms of the vacuum state, the coherent state is

|α〉 = e−|α|
2/2
∑
n

(αâ†)n

n!
|0〉 = e−|α|

2/2eαâ
† |0〉 (3.24)

Now, e−α
∗â |0〉 = |0〉 So, the Coherent state can be shown to be a displaced vacuum

state. Apply the Baker-Hausdorff formula with A and B operators as eαâ
†

and e−α
∗â to

obtain

|α〉 = D̂(α) |0〉 = eαâ
†−−α∗â |0〉 (3.25)

where D̂(α) is the displacement operator. Now, another important observation regarding
the Coherent state is its probability distribution, that is, the probability of finding n
photons in the state |α〉. This is given by

P (n) = | 〈n|α〉 |2 = e−|α|
2 (|α|2)n

n!
= e−〈n〉

〈n〉n

n!
(3.26)

So, this probability distribution is Poisson. Most lasers produce coherent states and the
photons follow a Poisson distribution. This sort of light is called Poissonian light. There
are other non classical states of light which are sub-poissonian or super-poissonian in
nature. One such very important form of light is a squeezed state, which is a
sub-poissonian state of light, which shall be described in more details in the next section.

At this point, we must also mention shot noise. To speak very simply, shot noise is the
noise in our photodetection arising from the Poissonian nature of our light. It is just the
uncertainty in the exact value of our classical intensity from the photodetector, which is
after all a classical device, due to the quantum nature of light [7]. More on analysis of
shot noise shall be discussed in the following sections and chapters of this thesis. Before
we go on to Squeezed states, let us say a few more things about Coherent States and
uncertainty of our observables in a quantum measurement.
Solving the Schrödinger equation for a single mode field in the Coherent State
representation, we get the wave function

ψ0 = (
ν

π~
)1/4e−νq

2/2~ (3.27)
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which represents a Gaussian Wave Packet. Now let us calculate the uncertainties in the
observables p and q. With respect to this wave function, the uncertainties are given by

∆q =

√
〈q2〉 − 〈q〉2 =

√
~
ν

(
n+

1

2

)
(3.28)

∆p =

√
〈p2〉 − 〈p〉2 =

√
~ν
(
n+

1

2

)
(3.29)

So the uncertainty product of these variables is

∆p∆q = ~(n+
1

2
) (3.30)

The ground state uncertainty is
~
2

while the first excited state uncertainty is
3~
2

. For a

displacement operator acting on a vacuum state, the wave function can be found by a
coordinate transformation from q to some (q− q0). The coherent state remains a quantum
harmonic oscillator just translating in the Hilbert space.

3.3 Squeezed states and the balanced homodyne

detection scheme

Figure 3.1: a) Phasor diagram for a classical wave of phase φ and amplitude E0; b) phasor
diagram in quadrature units with each axes being a quadrature; c) time dependence of the
X1 field quadrature.

Let us start by a brief treatment of phasor diagrams and field quadratures. We know
that any classical field can be expressed as a phasor ~E = E0e

iφ. Likewise, in quantum
optics, it is convenient to work with quantities that are dimensionless and we would want
to express any state as a phasor like this, with the two axes called field quadratures.
For a classical travelling electric field, the quadratures, for example, can be defined as

X1(t) =

(
ε0V

4~ω

)1/2

E0 sinωt (3.31)
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X2(t) =

(
ε0V

4~ω

)1/2

E0 cosωt (3.32)

Likewise, a coherent state can also be expressed as a phasor with certain quadrature
amplitudes. Define α as

α = |α|eiφ = X1 + iX2 (3.33)

The two quadratures have equal uncertainty and are expressed as

X1 = |α| cosφ (3.34)

X2 = |α| sinφ (3.35)

∆X1 = ∆X2 =
1

2
(3.36)

Here,

Figure 3.2: Phasor diagram for a coherent state showing the quadrature values.

|α| =
√
ε0V

4~ω
E0 (3.37)

In general, we can define quadrature operators as

X̂1 =
â+ â†

2
and X̂2 =

â− â†

2i
(3.38)
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These operators, when operated on a certain “coherent-like” state, or, a state, which can
be expanded in a Fock basis, gives the component of the state along a certain quadrature.
Essentially, it collapses the state from a Hilbert space to a 2D space called the “quadrature
phase space” and then the expectation value of this operator gives the component of the
quantum field of this state along that quadrature. We can also write a number-phase
uncertainty as

∆n∆φ > 1/2 (3.39)

This shows that it is not possible to know the photon number (i.e. the amplitude) and the
phase of a wave with perfect precision at the same time.

Squeezed states are states with unequal uncertainties in the two quadratures. That is,
one quadrature can be measured very accurately while the other quadrature cannot. And
by accurately, I mean the uncertainty is lesser than the standard quantum limit. That is,
for a shot noise limited system, the uncertainty (or the variance) is less than the level of
shot noise at that quadrature. A shot noise limited system is a system where the
classical noise is minimised as much as possible and the system is able to see quantum
noise. This means that considering all other forms of noise apart from shot noise as N
(say), the total noise TN is greater than or equal to 2N. So, the dominant form of noise
will be shot noise. A shot noise limited system is necessary to detect any form of
non-classical light, especially squeezed light, as we want to measure how much the
squeezing has been with reference to the standard shot noise at a certain intensity of our
field. This is usually detected by measuring the variance of the signal for enoughly small
bins in time.

For a coherent state, the variance is equal for all bins. Depending on what phenomenon
we are obtaining the squeezing from, the timescale of the bin will be set. For our case, as
in for atomic transitions, we would want at least a microsecond bin. In a squeezed state,
the uncertainty in one quadrature transcends beyond the standard quantum limit while
the uncertainty in the other quadrature gets higher. One way in which this can be
achieved is to squeeze the uncertainty circle of the vacuum or the coherent state into an
ellipse of the same area. Such states are called quadrature-squeezed states. Figures 3.3(b)
and 3.3(c) illustrate two other forms of squeezed light in which the uncertainty circle of
the coherent state has been squeezed into an ellipse of the same area. In (b) the major
axis of the ellipse has been aligned with the phasor of the coherent state, so that the
phase uncertainty is smaller than that in the original coherent state, while in (c) the
minor axis has been aligned in order to reduce the amplitude uncertainty. The two states
are therefore called phase-squeezed light and amplitude squeezed light, respectively.
Squeezed states are used extensively in various kinds of precision measurements. For
example, the LIGO interfereometer uses squeezed vacuum for all its meausurements to get
better accuracy. [29] [30]

Mathematically, the squeezing operator for a single mode EM field is given by

Ŝ(z) = exp

(
1

2

(
z∗â2 − zâ†2

))
, z = reiθ (3.40)
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Figure 3.3: Darker circle shows the squeezed state uncertainty; a) quadrature values of a
squeezed state-squeezed vacuum in this case; b) phase-squeezed light; c) amplitude-squeezed
light; d) output current with time of the balanced homodyne detector circuit.

where Ŝ(z) is a unitary operator and follows S(ζ)S†(ζ) = S†(ζ)S(ζ) = 1̂. r is the
magnitude of the phasor in the quadrature phase space.The action of the squeezing
operator on creation and annihilation operators produce

Ŝ†(z)âŜ(z) = â cosh r−eiθâ† sinh r and Ŝ†(z)â†Ŝ(z) = â† cosh r−e−iθâ sinh r (3.41)

Squeezed states can be detected by a balanced homodyne detection scheme (Fig. 3.4).
In this kind of detection, denote the field for which squeezing is to be detected as the signal
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field. This field is made incident on a 50:50 beam splitter along with a local oscillator
field. The local oscillator field is usually a field from the same source-the same laser or
whatever, which usually has a very large amplitude compared to the signal field and has a
pre-determined phase difference with the signal field. The two fields are made to fall on
the beamsplitter after traversing more or less the same path length with a very high mode
match percentage at the beamsplitter. The local oscillator path has a piezo connected
to one of the mirrors which can change the path length and hence the phase. After the
beamsplitter, the two fields are made to fall on two photodiodes PD1 and PD2. The
difference current is measured. As shown in the figure 3.4, the output fields ε1 and ε2 are

Figure 3.4: a) A schematic of a general homodyne detection setup; b) Typical circuitry of
the homodyne photodetector output .

given by

ε1 =
1√
2

(εLOe
iφLO + εs) (3.42)

ε2 =
1√
2

(εLOe
iφLO − εs) (3.43)

Now we split the field into its two quadrature components.

εs = εX1
s + iεX2

s (3.44)

Then, splitting the output fields into their real and imaginary parts in terms of the
quadrature fields gives us

ε1 =
1√
2

(εLO cosφLO + εX1
s ) + i(εLO sinφLO + εX2

s ) (3.45)

ε2 =
1√
2

(εLO cosφLO − εX1
s ) + i(εLO sinφLO − εX2

s ) (3.46)
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Then, the output is proportional to (i1 − i2) which are in turn proportional to the field
amplitudes ε1ε

∗
1 and ε2ε

∗
2. So, we can write

Output ∝ 2εLO(cosφLOε
X1
s + sinφLOε

X2
s ) (3.47)

As is clear from the equation, we are stroboscopically looking at the two field quadratures
at different phase values. For certain phase values, the first term vanishes and for certain
other phase values, the second term vanishes. At these values, we are essentially looking
at the field quadrature amplitudes directly, amplified by the LO field. The LO field does
precisely the same, that is, it amplifies the output and increases the value of our signal
even for very weak fields.
One can see the how the output looks like in Fig. 3.3(d). This is from a landmark paper
[31] in the field of squeezing by Breitenbach et al published in Nature where squeezing was
produced from an Optical Parametric Oscillator for the first time. The first signal is the
output from a balanced homodyne detector for a coherent state, the second for a phase
squeezed state, the third for squeezing at a certain angle of the phasor not nπ/2 or nπ,
the fourth for amplitude squeezing and the fifth for squeezed vacuum. One can clearly see
that the variance of the signal at various phase values varies for squeezed light. A more
mathematical treatment of variance and characterisation of a balanced homodyne detector,
that we developed, shall be given as a support for our data in the “Results and Analysis”
section. Figures 3.1, 3.2, 3.3 a), b), c) have been taken from the book “Introduction to
Quantum Optics” by Mark Fox.

3.4 The Rydberg blockade

Rydberg atoms have been extensively studied to explore the various effects arising from
the large dipole moment between the highly excited electron and the nucleus. One such
effect is the presence of the Rydberg Blockade. The advantage of the Rydberg
nonlinearity over conventional nonlinear processes such as the Kerr Effect arising from a
third-order nonlinearity, is that dipole-dipole interactions are usually long-range and
stronger. I have already stated the goals of using Rydberg transitions and the various
fundamental ways in which it can be used in the Introduction. Here, I will very briefly
note down some of the characteristics of the Rydberg transition. For a more detailed
discussion, a very nice review paper on this topic has been published by Firstenberg et al.
[10]

One of the biggest achievements in exploring Rydberg transitions was to obtain the
Rydberg EIT. In 2005, Friedler et al for the first time discussed the idea that one could
couple the doubly excited state in a ladder type EIT to highly excited Rydberg states
which are metastable [32]. They showed that one could “transfer the strong interactions
between Rydberg atoms onto the optical transition and thereby realize a photonic phase
gate”. The first experimental demonstrations of the Rydberg EIT upto n=124 was done
by Mohapatra et al in 2007 [14].The first experiments to show the nonlinearities arising
from the Rydberg blockade in an ultracold atomic ensemble were performed in 2010 in CS
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Adams’ group [33]. Recently, the nonlinear nature of the Rydberg Blockade in a thermal
vapour cell has also been shown by employing a heterodyne method of detection [12]. The
possiblity to create entangled quantum states using the Rydberg blockade has resulted in
proposals to use Rydberg atoms as the building blocks of a quantum computer [34], and
the first proof-of-principle experiments have already been carried out [35].

We will briefly outline the mathematics behind Rydberg atoms and the Rydberg blockade.

3.4.1 Dipole-dipole and van der Waals interactions

Rydberg atoms are very sensitive to external electric fields, with their polarizability scaling
with the principal quantum number like n7. To analyze the strong interactions in Rydberg
atoms, we consider that their electron wave functions don’t overlap andd that they are far
enough apart. As the Rydberg wave functions decay exponentially at large distances, it
is possible to express this in terms of a single quantity, the Le Roy radius RLR, which is
given by

RLR = 2
(√
〈n1, l1 |r2|n1, l1〉+

√
〈n2, l2 |r2|n2, l2〉

)
(3.48)

where |ni, li〉 refers to the electron eigenstate of the ith atom. Treating the Rydberg
electrons as hydrogenic, we obtain for the expectation value

〈
r2
〉

=
n2

2

[
5n2 + 1− 3l(l + 1)

]
(3.49)

In this regime, the interaction potential between two atoms separated by a distance R can
be expressed as an Laurent series in R,

V (r1, r2) =
1

|r1 − r2|
= −

∞∑
n=1

Cn
Rn

(3.50)

The first two terms of the series correspond to the Coulomb and charge-dipole interaction,
respectively, and therefore vanish for neutral atoms. The first contribution therefore comes
from the dipole-dipole interaction, which is given by

V (r1, r2) =
(
1− 3 cos2 ϑij

) didj
R3

(3.51)

where di and dj are the electric dipole operators and ϑij is the angle between the interatomic
axis and the quantization axis of the atoms. The higher order terms can be expressed in
terms of a series expansion involving spherical harmonics.

In the following we will concentrate on two atoms in the same s state |r〉, i.e., n1 = n2 = n.
In this case, the main contribution comes from a single combination of p states |r′r′′〉 =
|n′1, p1, n

′
2, p2〉. In the case of rubidium, we have n′1 = n and n′2 = n− 1, as the difference

in the quantum defect for s and p states is close to 0.5. The energy difference between
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the states |rr〉 and |r′r′′〉 is the Förster defect δF . Then, we can write the interaction
Hamiltonian in the basis consisting of |rr〉 and |r′r′′〉 as

H =

 δF
dr′r′dr′′

R3

√
Dϕ

dr′r′dr′′

R3

√
Dϕ 0

 (3.52)

where the coefficient Dϕ = 3 follows from the angular part of the dipole operators. The
eigenvalues of the interaction Hamiltonian are

Vint(R) =
δF
2
± 1

2

√
δ2
F + 4

(d1d2)2Dϕ

R6
(3.53)

Define Vdd = d1d2/R
3. For Vdd � δF , we have

Vint(R) = ±dr
′r′drr′′

R3

√
Dϕ (3.54)

As the dipole-dipole interaction is so strong that it mixes the electronic eigenstates, the
interaction decays like 1/R3 even though the unperturbed eigenstates do not have a
finite electric dipole moment. The other regime is where the atoms are so far apart that
Vdd� δF . Then we can perform a Taylor expansion of Vint(R), obtaining

Vint(R) = ±(d1d2)2Dϕ

δFR6
(3.55)

This interaction is a van der Waals interaction decaying like 1/R6. In the limit R→∞,
the negative eigenvalue connects to the unperturbed state |rr〉. From this, we can read off
the van der Waals coeffcient C6 to be

C6 =
(d1d2)2Dϕ

δF
(3.56)

Note that δF may be negative for certain combination of states, in this case the van der
Waals interaction is repulsive. Consequently there is is a crossover from a resonant dipole
interaction at short distances to a van der Waals interaction at large distances taking
place at a critical radius rc, which is given by

rc =
6

√
4 (d1d2)2

δ2
F

(3.57)

There is a dramatic scaling of the van der Waals coefficient with the principal quantum
number n. Each transition dipole moment scales as di ∼ n2, resulting in a n8 dependence
from the dipole matrix elements. However, the Förster defect has the same scaling as the
energy splitting between neighboring Rydberg states, δ ∼ n−3. Overall, this results in a
scaling of the van der Waals coefficient like C6 ∼ n11.
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3.4.2 The Rydberg blockade mechanism

Here, we will consider a reonant laser field between two levels again, with a ground state
|g〉 and an excited Rydberg level |r〉. We will also assume that the atoms are far apart
and that we can approximate the interactions as van der Waals interaction, that is, the
atoms are separated by more than rc. This system is fully described by the states |gg〉,
|gr〉, |rg〉, and |rr〉. The Hamiltonian in this basis is of the form

H =
Ω

2
(|g〉〈r| ⊗ 1 + 1⊗ |g〉〈r|+ H.c.)− C6

R6
|rr〉〈rr| = Ω

2
(|gg〉〈gr|+ |gg〉〈rg|+ |gr〉〈rr|+

|rg〉〈rr|+ H.c)− C6

R6
|rr〉〈rr|

(3.58)

Note that the state |−〉 = (|gr〉 − |rg〉)/
√

2 is an eigenstate of the Hamiltonian with an
eigenvalue of zero, and hence, does not take part in the ddynamics. So, we approximate
our system as an effective three level system with the states |gg〉, |+〉 = (|gr〉+ |rg〉)/

√
2

and |rr〉. In this basis, the Hamiltonian is

H =

√
2Ω

2
(|gg〉〈+|+ |+〉〈rr|+ H.c.)− C6

R6
|rr〉〈rr| (3.59)

In the weakly interacting regime where |C6| /R6 � Ω, the system will undergo slightly
perturbed Rabi oscillations with Rabi frequency Ω, but the qualitative picture is similar
to the single atom case. However, in the strong interacting regime |C6| /R6 � Ω, the first
excitation from |gg〉 → |+〉 is unaffected by the interaction, while the second excitation
from |+〉 → |rr〉 is off-resonant because of the strong interaction. One can see that the
level |+〉 is just the EIT first excited state in the dressed state picture, while the state
|rr〉 is the second excited state in a ladder type of configuration. This essentially means
that the |rr〉 state is decoupled from the dynamics, as it can never be reached. This
decoupling of the doubly excited state is called the ”Rydberg blockade”. We can reduce
the description to a two level system consisting only of |gg〉 and |+〉, governed by the
Hamiltonian

H =

√
2Ω

2
(|gg〉〈+|+ H.c.) (3.60)

The dynamics of this Hamiltonian again produces Rabi oscillations, however with two
important differences to the non-interacting case. First, the maximum probability to find
an atom in the Rydberg state, pr is 1/2, as the |+〉 state has only one of the two atoms in
the Rydberg state. Second, the Rabi frequency is enhanced by a factor of

√
2, resulting in

pr(t) =
1

2
sin2(
√

2Ωt) (3.61)

The distance at which the blockade sets in can be determined by setting the interaction
strength equal to the Rabi frequency. This results in a blockade radius rb given by

rb =

√
|C6|
Ω

(3.62)
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The |+〉 state can be shown to be a maximally entangled state and if we can prepare
our system in the |+〉 state using a pulse of duration t = π/

√
8Ω, Rydberg atoms can be

employed as qubits in a quantum computer.

3.4.3 Rydberg blockade as a nonlinear medium

The shift in a Rydberg Level is given by

∆Ryd = −1

2

αε2

~
(3.63)

where α is the atomic polarizabilty at the frequency of the external field, whose amplitude
is given by ε, which, depending on the system, can be different from the laser field. The
low frequency susceptibility scales with the principal quantum number n as n7. To
qualitatively understand the Rydberg–Rydberg interaction, consider that another
Rydberg atom produces a low frequency field ε proportional to the induced Rydberg
dipole which scales as n2. Considering only the dipole-dipole interaction term in the
interaction Hamiltonian, we obtain a scaling αε2 ∼ n11, which is like a Van-der-Waals
interaction, as shown in a previous subsection.

The nonlinearity of a Rydberg blockade can be expressed as a third-order nonlinearity like
the Kerr Effect, as

χ(3)ε2 =
∂χr
∂ω

∆Ryd = −ngα
ω
ε2 (3.64)

where χr is the real part of the electric susceptibility, ng = 1 + ω
∂n

∂ω
' 1

2
ω
∂χr
∂ω

(for large

group index, for example, in a dilute medium with refractive index close to unity, or, in
an EIT).

The term Rydberg blockade refers to the case where the interaction-induced shift is
much larger than the EIT linewidth. The volume around a Rydberg atom in which the
EIT is suppressed, that is, where the atoms can carry out the transition from the ground
state to the first excited state but not the EIT transition from the first excited state to
the second excited state, is called the Rydberg blockade, which has been mathematically
demonstrated in the last subsection. This can roughly be taken as the region in which the
Van-der-Waals interaction has a very dominant influence. As already mentioned, an
atom-light quasi-particle is also called a polariton. The Rydberg blockade forms what is
known as a dark state polariton-dark state in the sense that the EIT control beam
passes through without getting absorbed just like seen in a dark state. However, as we are
monitoring the probe beam, we will only see the transparency due to the EIT.

We can derive the blockade radius rb in another way. In the case of the Rydberg blockade,
the nonlinearity can be considered as a switch from the 3-level EIT susceptibility χ3−level
to the 2-level susceptibility χ2−level. The Rydberg Blockade Radius can be found from the
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requirement that V (rb) = 2~ΓEIT , where V is the Rydberg-Rydberg interaction potential.
For a Van-der-Waals interaction, V (r) = C6/r

6. So,

rb =
6

√
C6

2~ΓEIT
(3.65)

The nonlinear effect is more pronounced for more atoms contributing to the 2-level
susceptibility within the blockade sphere. So, the nonlinearity is more for more optical
depth per blockade sphere. However, even in the classical or partially blockaded regime,
the nonlinearities are about five orders of magnitude higher than the normal EIT medium.
For calculating this, let us first relate the two and three-level nonlinearities. Rydberg

excitation converts a fraction (
Ωp

Ωc

)2 of nearby atoms to 2-level scatterers. So,

χ3−level = N
4π

3
r3
b

(
Ωp

Ωc

)2

χ2−level (3.66)

Now, Ωp = dεp/~, where d is the dipole matrix element for the 2-level transition. This
gives a Kerr-like nonlinearity. For a blockade radius of 5 µm and a control Rabi frequency
(Ωc) of a few MHz, and typical atomic density as in a thermal vapour cell, the
nonlinearity can be calculated to be almost 5 orders of magnitude higher. Similarly, the
Rydberg EIT can be shown to have a dispersive quantum nonlinearity.

The Rydberg EIT has been used to produce various kinds of non-classical light states. As
has already been mentioned in the Introduction, Rydberg polaritons are a potential
candidate for various kinds of quantum simulation. Most mention-worthy out of all the
non-classical light experiments is probably the work done in Vladan Vuletic’s group at
MIT, where they have recently shown three photon bunching using a Rydberg EIT
medium [36]. Previously, two photon bunching has been shown [15]. Our experiments are
motivated from these experiments proving the non-linearity of the EIT medium.

We tried to obtain squeezed light from a Rydberg EIT medium. Rather, we have tried
observing the EIT probe-beam emerging from the vapour cell using a balanced homodyne
setup, and have obtained some preliminary signs of phase dependent noise, which might
be indicative of quadrature squeezing. This could be a very useful alternative to
conventional media which can produce squeezed light, like an Optical Parametric
Oscillator (OPO) [37], which has been shown to produce highly squeezed states[31] [38].
OPOs also have a second order nonlinearity, which can be obtained from the Rydberg
blockade as discussed above. Although the squeezing we have obtained is not as much as
obtained from OPO setups, this is a preliminary result and the results can be improved
using cold atoms, for which we can expect higher optical depth per blockade volume.
Details of the experiment shall be provided in later sections.
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Experimental details, results and analysis

In this chapter, I will detail out my experimental setup and provide a step by step
methodology for our experiments, both at Uni Mainz and at IISc. The experiments were
very similar and so were the setups, although the end goal was different. At IISc, as
already mentioned in the Introduction, we have been able to reach different n states for
the Rydberg EIT, upto n ' 60, after which we have faced some problems regarding the
resources that we have. This is rather similar to what we did in Mainz as an initial step,
that is, progressively go up in n states so that the Rydberg blockade size increases,
observe the EIT first, and then measure the shot noise in the different quadratures for the
probe beam emerging out of the EIT. In Mainz, we have been able to go upto n = 95,
where we have observed some splitting of the EIT peak, which justifies that what we have
been trying here at IISc is possible at high enough n levels.

We have worked with diode lasers at both places. At Mainz, we worked with Toptica
diode lasers, which were pre-set-up and already working when I started my project. I had
to set up and use frequency stabilisation schemes for the three lasers that were being used
for my experiment. There were two main lasers, which were used for obtaining the
Rydberg EIT in the Homodyne Detection Setup. These were drawn with single mode
polarisation maintaining fibers from their respective locking schemes, which I shall
describe in detail. A third laser was drawn using a fiber into the blue laser locking setup
for locking the blue laser with a Rydberg EIT itself. This laser was locked at a different
optical table with a technique called SAS, which is something I will describe in a while.

At IISc, I was working with a 480 nm Toptica diode laser but the 780 nm laser was home
built. This meant that I got the opportunity to set the laser up from scratch, which was a
huge learning experience. I shall start by describing this process.
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Figure 4.1: Schematic of experimental setup for balanced homodyne detection of squeezing
from Rydberg EIT
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4.1 Setting up an external cavity diode laser

We start by wearing a metal wrist band and grounding ourselves so that any static
charges are not transferred to the laser diode. All tools used should be kept on an
insulating mat to prevent any static charge accumulation, after they are grounded once.
Now, as is customary while installing any new device, we carefully look at the
specifications of the diode data sheet and identify the maximum optical power Pmax. We
check the pin codes of the diode and the jumper settings are set according to it. The
switch is made positive/negative in the current controller according to the jumper
settings.

Next we do what is called the open loop measurement. We measure the power vs the
current at the controller and calibrate this, without putting in the grating. We put the
current corresponding to the maximum power as Imax in our current controller to avoid
any problems. The diode is usually operated at 0.9Pmax. The beam coming out of the
laser diode is usually slightly elliptical and we do beam profile measurements with a
ThorLabs Optical Beam Profiler to calculate the Rayleigh Range and other such
parameters for the Gaussian beam. We also measure the threshold current. Next we put
in the diffraction grating that is the key tool in controlling the wavelength of our laser.
Once we put in the grating, we go to current levels slightly above the threshold level. The
grating is usually set up in the Littrow or Blazed Grating configuration, in which the
reflection and the diffraction orders are merged so that the laser gets feedback properly.
The brightest spot coming from the grating is the 0th order and the next spot is the ±1
order. We see the +1 order next to the 0th order, and we make the two coincide for
obtaining flashing. The −1 order goes back inside the laser cavity and when we match the
other two orders, the −1 order exactly retraces the 0th order upon reflection. We use a
CCD camera to monitor this on a dark background. We play with the grating angle and
height and merge these orders. When they merge, there is a sudden increase in brightness
of the spot, which is called flashing. For our laser, flashing was obtained at 29 mA of
current. We usually operate our laser at current levels around 100 mA. Flashing at a low
enough level would mean that the laser would have good feedback at high current levels
and that we would not expect too many mode hops.

After this, we fix the grating and we direct our beam into the wavemeter. then, for coarse
adjustment, we play with the grating angle to get near the necessary wavelength. For fine
adjustment, we have a piezo attached to the grating which can change the distance of the
grating from the diode lens and hence the orientation very slightly. This can change the
wavelength in small steps. Then, once we are near the required wavelength for the atomic
transition, we try and get the fluorescence of our atomic medium. Once we observe the
fluorescence, we set up the SAS, which has been described in the next section.

The experimental setup has been described in Fig. 4.1. The different parts of the setup
have been labelled accordingly. It consists of four parts, each connected to the others by
single mode polarisation maintaining fibers-the SAS locking scheme for 780 nm laser used
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as EIT probe for the blue locking, the blue locking scheme, the SAS locking for the 780
nm laser used as EIT probe for Homodyne setup, and the Homodyne setup itself.

4.2 Frequency stabilisation of the laser

4.2.1 Saturated absorption spectroscopy

Lasers, in general, are non-equilibrium dynamic systems which need active feedback
to stay at a certain frequency. Atomic transitions require narrow linewidth of lasers
and transitions of narrow linewidths can often not be seen because of various kinds of
broadening of the spectrum. The most prominent among these is Doppler broadening.
Doppler broadening occurs because different velocity groups perceive different frequency
shifts due to the Doppler effect. We can approximate that the atoms follow a Maxwell
Boltzmann Distribution in a thermal vapour cell given by

n(v)dv = N

√
m

2πkBT
e
−
mv2

2kBT dv (4.1)

This results in a broad absorption profile which does not show the different hyperfine
transition. In Saturated Absorption Spectroscopy (SAS) we use a strong pump
beam and a weak probe beam of the exact same frequency (often, we just retro-reflect the
pump after passing it through some attenuator) and align them with each other inside
the atomic medium. They are usually made counter-propagating. Since the transition
probability increases nonlinearly with respect to the light intensity and the pump beam
is strong, we can expect that some electrons are pumped to the excited state when the
laser field is resonant with a transition. This population transfer leaves fewer atoms in the
ground state than before and the weak probe beam passes through with less absorption.
This happens for two reasons-the transition probability for the weak probe is very less, and
there are very few electrons in the ground state left to absorb photons. So very few photons
are absorbed and we see heightened transmission, essentially, a peak in transmission at
the resonant frequencies. We know that at the saturation intensity Isat, the population is
25% in the excited state. Usually, we operate at powers of the pump beam lower than this
value. We can calculate Isat as

Isat ≡ πhc/3λ3τ (4.2)

We can also use a very practically applicable formula for calculating the Rabi frequency of
a certain transition.

2
Ω2

Γ2
=

I

Isat
(4.3)
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These are hyperfine peaks for the zero velocity atoms. But the field also interacts with the
non-zero velocity atoms and show what are called “crossover” peaks. These peaks arise at
exactly the middle of 2 transition frequencies. Here, the pump is resonant with one
transition and the probe is resonant with another transition, probabilistically speaking.
So both positive and negative velocity groups contribute to the crossover peak and hence
they are more prominant than the resonance peaks. Typical SAS spectrum for 87 Rb is
shown in Fig. (4.2). This signal has been obtained after subtracting the Doppler
background from the SAS spectrum. In the experimental setup Fig. (4.1), one can see the
experimental setup for a SAS, where we send counter propagating strong pump and weak
probe after retro-reflection through an attenuator. The Quarter Wave Plates (QWP) are
used for phase correction after reflection from the mirror as we are using a double pass
configuration for the AOM. These shall be briefly described in the next section.

Figure 4.2: 87Rb D2 line Fg = 2→ Fe SAS spectrum

4.2.2 Some experimental techniques and devices used in our
setup

Acousto-Optic Modulator-This has been referred to as AOM in our experimental
setup. AOMs are devices used for frequency shifting a certain laser beam by a value,
usually in 10s of MHz. It consists of a crystal to which an RF signal is fed. This creates
phonon based acoustic vibrations in the crystal which forms a dynamic grating by a
“Raman-Nath” like effect. The beam is either upshifted or downshifted depending on
which order of diffraction we select, and depending on the direction of the RF signal fed
into it. AOMs can also be used for intensity manipulation of a certain order. The orders
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are deflected by a certain angle depending on the magnitude of the RF waves. The angle
of the AOM with the beam also determines how many orders of diffraction in which
direction are generated.

To take care of this problem of the AOM upshifted or downshifted beam emerging at an
angle with the original beam, people often use what is called the “Double-Pass
Technique”. In this technique, we use a convex lens or a concave mirror after the AOM. If
a convex lens is used, both the AOM and the mirror are placed at the focii of the lens.
The first order diffraction is usually selected and the zeroth order is blocked. This first
order upon reflection from the mirror again gets either upshifted or downshifted
(depending on whether we select +1 or −1 order) and retraces the beam path of the
original beam. Thus, if we set a frequency f that the AOM will shift the beam by in
every pass, the beam gets frequency shifted by 2f , while maintaining the original beam
direction. This way, we can use the AOM for frequency scanning as well.

Electro-Optic Modulator-This similar to an AOM but driven by the electrical signal
from a function generator. It works on the electro-optic effect, where the refractive index
depends on the electric field. It is used for electrical modulation of the beam. This
generates sidebands for a laser beam, which can be used for locking the laser, which has
been discussed in the next subsection. The sideband spacing is equal to the driver
frequency. In our setup, we have given a 9.3 MHz signal to our EOM.

Vapour Cells-We have used a pure cell for our experiments where there is 72% 85Rb and
28% 87Rb, although we have only used 87Rb for our experiments. The cell is a cylinder
with dimensions of 25 mm dimater and 50 mm length. At room temperature, the vapour
pressure is 3× 10−7 torr.

4.2.3 Generating error signals and locking the laser

Let me motivate this section by first outlining a general theory for generating error signals
from a Pound Drever Hall (PDH) Driver. For generating a PDH readout, we modulate
the signal from a PD with some sort of external electric field. Consider a field E0e

iωt and
this is phase modulated by some β sinωmt. The resulting field Ei is

Ei = E0e
i(ωt+β sin(ωmt))

≈ E0e
iωt [1 + iβ sin (ωmt)]

= E0e
iωt

[
1 +

β

2
eiωmt − β

2
e−iωmt

] (4.4)

This field may be regarded as the superposition of three components. The first component
is an electric field of angular frequency ω, known as the carrier, and the second and third
components are fields of angular frequency ω + ωm and ω − ωm, respectively, called the
sidebands. Consider the cavity formed by the AOM and the reflecting mirror during
double pass. In general, this can be replaced by any sort of Fabry-Perot cavity. The light
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Er reflected out of a Fabry–Pérot two-mirror cavity is related to the light Ei incident on
the cavity by the following transfer function:

R(ω) =
Er

Ei

=
−r1 + (r2

1 + t21) r2e
i2α

1− r1r2ei2α
(4.5)

where α = ωL/c, and where r1 and r2 are the reflection coefficients of mirrors 1 and 2 of
the cavity, and t1 and t2 are the transmission coefficients of the mirrors. Applying this
transfer function to the phase-modulated light Ei gives the reflected light Er:

Er = E0

[
R(ω)eiωt +R (ω + ωm)

β

2
ei(ω+ωm)t −R (ω − ωm)

β

2
ei(ω−ωm)t

]
(4.6)

The power Pr of the reflected light is proportional to the square magnitude of the electric
field, Er ∗ Er, which after some algebraic manipulation can be shown to be

Pr =P0|R(ω)|2 + P0
β2

4

{
|R (ω + ωm)|2 + |R (ω − ωm)|2

}
+ P0β {Re[χ(ω)] cosωmt+ Im[χ(ω)] sinωmt}+ (terms in 2ωm)

(4.7)

Here P0 ∝ |Eo|2 is the power of the light incident on the Fabry-Perot cavity, and χ is
defined by

χ(ω) = R(ω)R∗ (ω + ωm)−R∗(ω)R (ω − ωm) (4.8)

This χ is the ultimate quantity of interest; it is an antisymmetric function of ω − ωm. It
can be extracted from Pr by demodulation. First, the reflected beam is directed onto a
photodiode, which produces a voltage Vr that is proportional to Pr. Next, this voltage is
mixed with a phase-delayed version of the original modulation voltage to produce V ′r

V ′r = Vr cos (ωmt+ ϕ) ∝ Pr cos (ωmt+ ϕ) (4.9)

Finally, V ′r is sent through a low-pass filter to remove any sinusoidally oscillating terms.
This combination of mixing and low-pass filtering produces a voltage V that contains only
the terms involving χ:

V (ω) ∝ Re[χ(ω)] cosϕ+ Im[χ(ω)] sinϕ (4.10)

In theory, χ can be completely extracted by setting up two demodulation paths, one with
φ = 0 and another with φ = π/2. In practice, by judicious choice of ωm it is possible to
make χ almost entirely real or almost entirely imaginary, so that only one demodulation
path is necessary. V (ω), with appropriately chosen φ, is the PDH readout signal.

The error signal can be generated in two ways. One way is to pass the laser beam through
an EOM as already mentioned to generate sidebands. Then the output of the photodiode
is fed to a mixer where some signal is given from a function generator to the local
oscillator in the mixer. Then the output of the mixer is fed to a Pound Drever Hall Unit,
or, as in the case of blue locking, it is fed to a Fast Analog Control. From the Pound
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Drever Hall Unit, which generates the error signal, the signal is fed to a PID controller.
The PID controller does the actual locking in the sense that it always tries to bring the
error signal to its zero.

The other way to generate the error signal is by using a current module, as in the case of
the 780 nm main laser for Homodyne setup. The current module modulates the PD input
and that is directly fed into the PDH driver. No EOM is required in this case. Then a
similar path is followed. A FALC can perform a much faster lock compared to a normal
PDH-PID lock. For operating a FALC, one feeds the signal directly from the mixer into
the FALC. Some feedback is then turned on and one can see the feedback vary as one
changes the piezo offset of the controller slightly. We locked both the lasers for our EIT in
the Homodyne Setup, and then looked at the quadrature shot noise levels. The red laser
was locked to the F = 2→ F ′ = 3 transition in the D2 line of 87Rb. The way we did this
is we locked the laser to the 2 → 3 crossover. The double pass was adjusted to exactly
upshift the beam so that it was at the F = 2→ F ′ = 3 resonance. The error signal used
for locking the blue laser is shown in Fig. 4.3.

4.2.4 Producing the blue light

The blue laser is produced from a 960 nm laser after passing it through a Second Harmonic
Generation Cavity. Second Harmonic Generation is obtained from a nonlinear crystal by
taking advantage of the second order nonlinearity of the crystal. The induced second-
harmonic dipole per unit volume, P (2)(2ω) is given by

E(2ω) ∝ P (2)(2ω) = χ(2)E(ω)E(ω) (4.11)

The 960 nm laser is first passed through a Tapering Amplifier Cavity to amplify it and
then passed through the SHG cavity. The laser produced can be at intensities upto 200
mW.
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Figure 4.3: Error signal for 480 nm laser obtained from a Rydberg EIT at n = 85

4.3 Detector characterisation and automation of the

setup

Let us first calculate exactly how the output variance would depend on the variance levels
in the two quadratures and the intensities in the two arms. Consider light fields |a〉 and
|b〉 incident on the beamsplitter at the beginning of a homodyne Setup. α and β are the
mean values of the two fields. Let δa and δb be the uncertainties in the two fields. The
quadrature is given by Xϕ = X1 cosϕ+X2 sinϕ. The output field c and d are given by

c =
1√
2

(aeiφ + b) (4.12)

d =
1√
2

(−aeiφ + b) (4.13)

Then we can calculate the difference current as

I− = c+c− d+d = 2αβ Cosϕ+ 2αδXb
ϕ + 2βδXa

ϕ (4.14)

δXa
ϕ and δXb

ϕ are the total uncertainties for a and b for a certain quadrature value at an
angle ϕ. Note that we are interchangeably using both c and d as operators for the coherent
states and the coherent states themselves. As is obvious, the above expression calculates
the photon numbers for coherent states |c〉 and |d〉. The variance in the signal is given by

∆2I− = 4α2∆2δXb
ϕ + 4β2∆2δXa

ϕ (4.15)
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Now, we know in any one arm, shot noise is proportional to the intensity. So

∆2IEIT = mIEIT + n and ∆2ILO = pILO + q (4.16)

So, we get

∆2I− = {4(m+ p)ILO + 4EN}IEIT + 4ENILO + EN (4.17)

Finally, we can conclude

∆2VPD ∝ PLO∆2Xsig
φ + Psig∆2XLO

−φ (4.18)

So, given two arms open, if the power of any one arm is kept constant, one would get a
straight line for variance of homodyne output vs the intensity of the arm in which power
is varied. If any one arm is open and the other arm is closed, we would see the vacuum
field in the closed arm. So essentially, shot noise is way larger if both the arms are open.
This would give us the shot noise limit value for the setup.

Our setup is a polarisation homodyning setup with two orthogonally polarised beams
used in the two arms, which are mixed back at the mixing PBS. The reasons for
polarisation homodyning are two-firstly it is much easier to operate a polarisation
homodyning as one can get exact equal splitting at the homodyning PBS. Errors are, as a
result, less. Secondly, according to a paper by Budker et al [39], linearly polarised light
passing through a media where elliptically polarised light would show self-rotation, would
show vacuum squeezing in the orthogonal polarisation to the linear polarisation. So we
wanted to look at the polarisation only where the EIT is happening, so that we would
know whether the squeezing is due to EIT alone or not.

Now, we initially took a lot of data but due to human error at various steps we were not
getting very nice data. As in, our shot noise levels were not following the theoretically
predicted trend. Also, we needed more data and faster acquisition. Due to all these
factors, we have automated our setup. The automation has been carried out mainly by
employing two motorized piezo-driven waveplate mounts (Fig. 4.4), which would move in
a slip stick motion due to the piezo for smaller steps and jog with a stepper motor for
larger steps. These mounts could be interfaced with a LabVIEW programme very easily.
The power in the two arms of the homodyne setup were being monitored by splitting off
the power with some constant ratio beamsplitters and then making some power fall on a
photodiode. This photodiode was connected to an oscilloscope which could be operated
with a LabVIEW VI. The LabVIEW VI would obtain the voltage levels from the different
channels in the oscilloscope, which were characterised with respect to power. So, given a
voltage level, we would know how much power was falling on the photodiode. Now, since
the beamsplitters are constant ratio, we would know how much power is going into the
setup, either in LO arm or EIT arm. The beamsplitters were thoroughly checked for any
sort of non-preservation of polarisation but we did not find any. Once the power levels
required are set, we would take the data. Until then, an active stabilisation would go on.
We could in principle actively stabilise it even while taking data, but we found that the
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rotation of the mount led to increased acoustic noise in our signal.

The working of the LabVIEW code, although quite elaborate, is rather simple (Fig. 4.5).
The code takes the voltage level from the oscilloscope and converts it to power in the
respective arm as described above. Then this is compared to the required power as given
by the user. The user has to input a lower limit and an upper limit for the power required.
Then, there are two sets of loops, each corresponding to whether the power is less or more
than the target value in that arm. For each result of the duality, there are two loops
rotating the mount left or right, and constantly taking data about whether power is
increasing or decreasing, and comparing it to what should happen. This is given by the
flowchart below (Fig. 4.5). In Fig. 4.7, we have shown one such loop. There are four loops
for each mount, and total eight loops, for two mounts.
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Figure 4.4: Balanced polarisation homodyning setup with piezo driven stepper motor
rotation mount
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Figure 4.5: A basic flow chart of the LabVIEW code.

Figure 4.6: Intensity stabilisation achieved from automation. The error from target
intensity level as measured by a power meter is shown.

As one can see from (Fig. 4.6), the Intensity stabilisation is rather efficient and can stabilise
within 1 µW of error from target intensity value.
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Figure 4.7: A fragment of the LabVIEW code demonstrating the loop usage
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The characterisation data is then shown. First, we use a spectrum analyser in Zero Span
Mode for characterising our setup (Fig. 4.8). Here, it displays noise level as a function of
time at a constant frequency-which was 4 MHz in our case. The two arms show almost
exactly identical data, and as predicted, follow a straight line. The noise level would
depend on the Resolution BandWidth of our Spectrum Analyser, which was set at 100
kHz. In a finite span mode, i.e., 4MHz± 200kHz, it showed similar results (Fig. 4.9 and
Fig. 4.10). The higher the RBW, the higher would be the noise floor.

Figure 4.8: Characterisation of the setup with zero span mode of spectrum analyser with
only one arm open.

Figure 4.9: Traces as obtained from spectrum analyser for different power levels in
4 MHz± 200 kHz finite span mode.
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Figure 4.10: Noise as a function of power in finite span mode of spectrum analyser with
only one arm open.

In our main experiment to detect squeezing, we have used data from a Lecroy oscilloscope.
We have obtained the Homodyne Detector Output and then divided the obtained trace
into bins of 0.25µs. This corresponds to 4 MHz, which we have used for characterisation
using spectrum analyser. Then, we have plotted the variance for each bin and then
calculated the average variance and the standard deviation. For a coherent state, the
variance would be equal over all the bins theoretically. As already mentioned, coherent
states are Gaussian states with constant variance. A phase shift in any of the two beams
in the interferometer is essentially a displacement operation for a coherent state, or a
look at a different quadrature. For a squeezed state, we would obtain phase dependent
uncertainty in the shot noise levels. To prove that our system is indeed shot noise limited
at all power levels above a certain value, we plot the average variance over the entire
trace vs the beam power, for two cases-one arm open and both arms open. As we see
theoretically, for one arm open, as we vary the power of that arm, we would get a linear
dependence on the power if we plot the total noise, which is, the electronic noise, the
little bit of classical noise that we have, mainly as acoustic noise, and the shot noise, as a
function of the power. We do get that (Fig. 4.11). Theoretically, for both arms open, if
the power of one arm is kept constant, the total noise varies linearly with the power in
the other arm. This is shown experimentally in Fig. 4.12. This has been measured after
automation with ' 95% mode match and without piezo scan.
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Figure 4.11: Detector characterisation after automation by measuring oscilloscope variance
for bin number corresponding to 4 MHz, with only LO arm open.

From this graph, we find that our system is shot noise limited for all powers above ' 350
µW, with one arm open. The other arm, as mentioned before, has the vacuum field.

Visibility or mode matching percentage is defined as

Visibility =
Imax − Imin

Imax + Imin

(4.19)

This measurement is taken for only one arm open. It is essentially a G(1)(x1, x2) type of
measurement. For only one arm open, the Homodyne Signal would be a sinusoidal signal
with the minimum at y = 0 for perfect mode match. The Imax and Imin values are max
and min values of this sinusoidal signal. The mode match is first done by looking at a
beam tracing camera. We can see the individual beams quite clearly. The two beams are
brought together and then we play with two mirrors, the “mode-matching mirrors”, to
minimise interference between the two modes. This would mean that any fringes
appearing when the beams are brought together would disappear. Then we look at the
balanced Homodyne signal and maximise this visibility parameter. Our experiments were
routinely done with visibility > 90%. Usually, it was around 95-96%.
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With both arms open, as seen theoretically, the variance would vary linearly if the power
of one arm is kept constant and the power of the other arm is varied. We get such a graph
experimentally as well. LO Arm has been kept constant at 6 mW while EIT arm power is
varied, with a high mode match value (Fig. 4.12). From Fig. 4.11 and Fig. 4.12, we can
get the regime where we will be shot noise limited. We see that when one arm is open, we
are shot noise limited for powers around 350 µW. This means that for both arms open, we
are shot noise limited at all power levels in the EIT arm, for a constant power of 350 µW
and above in the LO arm. So, essentially, we are working in a regime where we are looking
at only quantum noise and all fluctuations are quantum in nature. Any results we get in
this regime would directly imply a change in the quantum state of our signal light field.

Figure 4.12: Detector characterisation after automation and ' 95% mode match by
measuring oscilloscope variance for bin number corresponding to 4 MHz, with both LO
and EIT arm open.
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4.4 Rydberg EIT at different n levels and the

Rydberg blockade

Figure 4.13: Rydberg EIT for n = 29 S1/2. a) EIT with red scanning and blue locked to
error signal from corresponding EIT in blue locking setup. b) EIT with blue scanning and
red locked to 2 to 3 crossover peak of SAS.

Figure 4.14: Rydberg EIT for n = 46 S1/2 with red scanning and blue locked to
corresponding EIT error signal.
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Figure 4.15: Rydberg EIT for a) n = 85 D5/2 and b) n = 89 D5/2, with blue scanning and
red locked.
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Figure 4.16: Graph showing the scaling of the Rydberg blockade with n value of the
Rydberg transition.

In (Fig. 4.13) Linewidth=2π × 0.4 MHz. Intensity of blue laser = 4.7746 mW/mm2.
Intensity of red laser = 9.55 µW/mm2. In (Fig. 4.14), linewidth=2π × 1.3 MHz. Intensity
of blue laser = 10.186 mW/mm2. Intensity of red laser = 9.55 µW/mm2. In (Fig. 4.15),
intensity of blue laser = 0.61 mW/µm2. Intensity of red laser = 0.1 µW/µm2. We have
obtained Rydberg EIT signals for different n values. As the n increases, the signal
amplitude in general decreases for the same Rabi frequencies of the probe and control. As
control Rabi frequency decreases, we have sharper peaks. The amplitude of the peak
increases both by increasing probe and control Rabi frequencies. We have obtained very
narrow EIT signals, of linewidth 2π × 0.4 MHz at n = 29 S1/2. As seen, for n = 46 as we
increase the control Rabi, we have a much bigger EIT. Something really interesting
happens for Rydberg EIT at very high n levels. As seen in (Fig. 4.15), at very high n
levels, the EIT is very sensitive to external electromagnetic fields. These might be DC or
AC fields. For a relatively lower magnitude of applied field, one would see a large shift in
hyperfine levels of a Rydberg state. This would result in interesting effects like alternate
EITs and EIAs. One can see very clearly that the EIT peak has split.

This is exactly the principle that we would want to use at IISc. Here, we have obtained
EIT signals for upto n' 60. We have also calculated the difference in energy of the
Rydberg levels, and the Rabi frequencies of control required to show the transition for a
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probe power of 50 µW. However, the microwave horn that we have, can only support
frequencies upto 6 GHz. This can only be obtained at levels n' 70. The laser diode for
the control operates optimally at frequencies lower than this required frequency. As a
result, we are not able to go this high in frequency and are severely limited in the power
at this high a frequency. Here, we are not using an SHG cavity like in Mainz, which is a
better way to produce the blue laser light.

The entire idea behind squeezing is that we exploit the nonlinearities in the Rydberg
Blockade and make the EIT probe beam pass through the Rydberg blockade in its
entirety, or as much as possible. The Rydberg Blockade scaling is shown in (Fig. 4.16).
We have used the Alkali Rydberg Calculator (ARC) package for these calculations. As
one can see, the blockade size is around 11 microns only at n = 82. We have focused our
beam to a waist of 11 microns by using 50 mm focal length lenses. Two pairs of lenses
are used-for focusing and defocusing. To make the waist comparable to the blockade
radius, we need to at least operate at n ' 80.
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4.5 Observing phase-dependent noise at high n levels

Figure 4.17: Comparison between variance values for squeezed light and for coherent light
for n = 75. a) Variance as a function of the bin number for coherent light not passed
through an EIT. b) Variance as a function of bin number for EIT probe beam obtained
after passing through a Rydberg blockade. c) The reconstructed homodyne signal obtained
by taking average of data in every bin.
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Figure 4.18: Comparison between variance values for squeezed light and for coherent light
for n = 85. a) Variance as a function of the bin number for coherent light not passed
through an EIT. b) Variance as a function of bin number for EIT probe beam obtained
after passing through a Rydberg blockade. c) The reconstructed homodyne signal obtained
by taking average of data in every bin.
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Any signature of squeezing would be associated with phase-dependent fluctuations in the
noise level, which would increase from the coherent state shot noise level for certain phase
values corresponding to a certain quadrature, where there is anti squeezing. For other
phase values corresponding to the other quadrature, the noise level would decrease below
the shot noise level, and the decrease is exactly the amount of squeezing that one observes.
So there would be alternate peaks and valleys [31]. If at all there is any squeezing or anti
squeezing, the variance of the trace from the homodyne setup would show that. (Fig. 4.17)
and (Fig. 4.18) show this.

So we have optimised our setup to operate at very high n levels at this point. We have
focused our beams to waist sizes comparable to the Rydberg blockade size. We have made
our blockades big enough, at least theoretically. We also have observed and locked our
lasers to EITs at these high n levels. Turns out, it was indeed fruitful. The first signs of a
phase dependent noise appeared around n = 75. Notice that the variances without EIT
are rather flat while the one with EIT has peaks appearing at certain values of the phase.
This becomes more prominent at n = 85. The peaks are double in height, meaning that
the anti-squeezing is almost 3 dB, if this is anti-squeezing indeed. In essence, we have
observed an increase in our noise level upto 3 dB which is only observed at certain phase
values. Whether this is indeed anti-squeezing or not, is under further investigation. We
have a lot of acoustic noise in our setup, which appears as ripples in the trace obtained
from the Homodyne setup. This creates a lot of noise in our graphs of variance. Although
phase dependent noise is very clearly visible, we cannot really say what is the value of
the squeezing if any, or what is the lowest point in the variance graph. This is a rather
elaborate project and this is a very preliminary but first sign of phase dependent noise.

4.6 Future directions

We can identify some improvements in our setup

• Use a voltage amplifier to obtain more cycles per piezo scan and see the repeatability
of results.

• Treat the Rydberg EIT as a non-linear medium and use a second probe beam for
the squezing detection like one would in say an optical parametric oscillator.

• Sound-proof the setup with foam-lined box.

• Analyse polarisation noise and reduce the loss in EIT arm after mixing PBS.

• Lock the blue laser with a cavity to obtain better locking linewidth.

For the project at IISc, we are primarily limited by our microwave horn. Once we buy a
new microwave horn which can support higher frequencies, we will be able to hopefully
achieve what we are trying to do.
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