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1 Introduction

Many experiments and laser applications involving atoms require that the frequency
of a continuous wave laser is stabilized onto one of their transition frequencies.
For example, in laser spectroscopy of atoms and molecules the resolution of the
measurements can be limited not just by the width of the spectral lines but also
by the stability of the used laser. The applicability of laser spectroscopy in many
fields lasts until today. For instance, in 2020, scientists at ISOLDE-CERN performed
collinear laser spectroscopy on the 3s23p2P3/2 −→ 3s24sS1/2 atomic transition of
27−32Al isotopes[1] to study their electromagnetic moments and changes in their
mean-square radii, with the goal of describing the structure of midshell nuclei in the
framework of the QCD theory.

Another example of an important application that requires stable lasers is laser
cooling[2]. In this technique, atoms or molecules are cooled using precisely tunable
lasers at frequencies close to their transition frequencies. This technique can be used
i.e. to create Bose-Einstein Condensates (BECs). The QOQI (Experimental Quantum
Optics and Quantum Information) research group at Johannes Gutenberg-Universität
Mainz is involved in the QUANTUS (Quantengase Unter Schwerelosigkeit) projects
[3] supported by the German Space Agency (DLR). These projects, in collaboration
with other German universities, are mainly aimed to develop quantum sensors based
on cold and ultra-cold atoms. The latest QUANTUS IV-MAIUS project [4] has the
main objective of generating Rubidium and Potassium Bose-Einstein Condensates
and use them to perform dual-species atom-interferometry aboard a sounding rocket,
hereby enabling a high-fidelity test of the weak equivalence principle. To create
BECs, atoms need to be cooled to temperatures close to the absolute zero, which can
only be achieved using highly stable lasers.

In these kind of collaborative projects between research groups of different universities
it is often required to transport experimental setups and equipment from one place
to another. The aim of this thesis is to address this requirement for experiments that
involve stable lasers at atomic frequencies by describing the building of a compact
and portable device that can be used to perform Active Frequency Stabilization of
a tunable laser onto an atomic transition frequency of Rubidium and at the same
time investigate which parameters in the device can be optimized to provide a better
Laser Frequency Stabilization. We chose this element because it is used inn the
QUANTUS projects. Another reason is that this element has a relatively simple
hyperfine structure of energy levels that provides atomic transitions of wavelengths
∼780 nm which can be used to stabilize a usual 780 nm tunable diode laser.

1



1 Introduction

First, along Section 2 we describe all the theoretical concepts and methods that
we need to consider in order to stabilize the frequency of a laser onto a transition
frequency of Rubidium. Specifically, in Section 2.1 we describe the different stages
in the Active Frequency Stabilization method. By doing so, we define the function
the compact module that we constructed in the frequency stabilization process,
which is to provide a measurement of the difference between the laser frequency and
the transition frequency of Rubidium that is used as a reference to stabilized the
laser. This measurement is provided in form of an electrical signal: the error signal.
To generate this signal we perform Rubidium Frequency Modulation Saturated
Absorption Spectroscopy method. This method combines two different technique
of Laser Spectroscopy: the Saturated Absorption Spectroscopy and the Frequency
Modulation Spectroscopy. Since we perform Rubidium Laser Spectroscopy, in
Section 2.2 we briefly describe the atomic structure of this element that provides the
transition frequencies which we want to detect in order to generate the error signal.
Then, in Section 2.3 we provide a qualitative explanation of how Lase Absorption
Spectroscopy can be used to detect when a laser is tuned to one of these transition
frequencies and we introduce the concept of transition lineshape, which determines
the interaction of the atoms with light at different frequencies. In Section 2.4 we
discuss how the broadening of the transition lineshape due to the Doppler-effect
experienced by the atoms of the gas moving in the direction of the incident light
affects the results of the laser spectroscopy by causing that the different transition
frequencies of the hyperfine structure of Rubidium cannot be resolved. This effect
is known as Doppler-broadening. To overcome this problem we use the Saturated
Absorption Spectroscopy method described in Section 2.5. This technique allows us to
measure a signal with resonances when the laser is tuned to the transition frequencies
of Rubidium. Finally, in Section 2.6 we explain how we can obtain an error signal by
modulating the frequency of the light used in the Saturated Absorption Spectroscopy
method (Frequency Modulation Spectroscopy).

An important feature required in a frequency-stabilization stage is that the deviations
of the laser frequency from the reference frequency onto which the laser is stabilized are
measured with a high signal-to-noise ratio. This means small differences of frequency
produce a high error signal. In Section 2.6.2 we derive that the signal-to-noise ratio
from the error signal that we generate using the Frequency Modulation Saturated
Absorption Spectroscopy method has a dependency with the deviation frequency,
which is a parameter of the Frequency Modulation described in Section 2.6.1 that
represents the maximum deviation of the laser frequency from its frequency when it is
unmodulated. In this thesis we also investigate this dependency in order to obtain a
higher signal-to-noise ratio that can result in a better Laser Frequency Stabilization.
To do so, we must have control of the deviation frequency values applied to the
frequency-modulated light field in the Saturated Absorption Spectroscopy method.
This is the aim of Section 3.1, where we present the working principle behind the device
that we use to produce the modulation of the light field: the electro-optic modulator, in
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1 Introduction

3.1.1. Then, in Section 3.1.2, we present the setup used to characterize the modulation
produced by the device and discuss the results in Section 3.1.3. The investigation of the
dependency of the signal-to-noise ratio with the deviation frequency is then presented
in Section 3.2. To do such an investigation we require to generate and measure the
error signal. The setup for the generation and measurement of the error signal is
presented in Sections 3.2.1 and 3.2.2. Since the setup requires generating the error
signal, in Sections 3.2.1 and 3.2.2 we also detail which of the components of this setup
are integrated in the compact frequency-stabilization module. Finally, the results of
the investigation are presented and discussed in Section 3.2.3.
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2 Theoretical background

In this section we present the theory underlying the different methods that we imple-
ment in the compact module that we constructed to perform laser frequency stabiliza-
tion onto a transition frequency of Rubidium. First, we describe the function of this
device in the Active Frequency Stabilization method and define what is the error sig-
nal and its importance in this method. Then we expose the fundamental concepts and
methods of laser spectroscopy that we incorporate to the compact module in order to
generate an error signal that can be used to stabilize a laser onto an atomic transition
frequency. We also include concepts of Frequency Modulation which is used in the
Frequency Modulation Spectroscopy method in order to generate an error signal of
this characteristics. This concepts are later used in Section 3.1

2.1 Basic scheme for Active Frequency Stabilization

The compact frequency-stabilization module that we constructed was conceived
to be used in the Active Frequency Stabilization method [5]. In this method, a
feedback-loop system is used to lock a frequency-tunable laser onto a stable frequency
reference (e.g. the frequency of an atomic transition) by correcting deviations of the
instantaneous laser frequency from this reference frequency.

The first element of the feedback loop is the laser to be stabilized. This laser must be
a frequency-tunable laser so its frequency can be adjusted to the frequency reference
once a full turn in the loop is completed. Another element of the feedback loop
is the frequency discriminant or discriminant. This is a device that detects the
difference between the laser frequency and the frequency reference and converts
it into a proportional voltage. This linear conversion of frequency differences into
voltages is defined by the so called discriminant signal or error signal such that
ϵ = D∆f is the error signal, ∆f is the deviation of the laser frequency from
the frequency reference and D is a constant called discriminator coefficient that
characterizes this linear relation. To tightly lock the laser frequency to a reference
frequency, the deviations must be detected with a high signal-to-noise ratio (SNR),
this means that small frequency deviations produce electrical signals big enough to be
detected and corrected. This is equivalent as having a big value of the discriminant
factor D (V/Hz). The discriminant generates an error signal according to a certain
discriminator coefficient that determines the signal-to-noise ratio and therefore can
ultimately determine the performance of the Active Frequency Stabilization system.
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2 Theoretical background

The last element of the loop is the Loop Filter, which is the comprised of electronics
that convert the error signal into a suitable control signal that can be fed back to the
laser to correspondingly adjust its frequency towards the reference frequency. A very
commonly used controller is the Proportional-Integral-Derivative controller (PID).
This is a device that continuously calculates an error value as the difference between
a desired setpoint, and a measured process variable –in this case the error signal–
and applies a correction based on proportional, integral, and derivative terms.

One of the goals of this thesis is to describe the building of a compact discriminant that
is able to generate an error signal whose reference frequency is one of the transition
frequencies of Rubidium and at the same time to investigate how the SNR of this error
signal can be improved to obtain a better frequency stabilization. Therefore, here we
only focus in the discriminant part of the loop and do not study its performance with
a Loop Filter in a frequency-stabilization feedback loop..

Figure 2.1: Basic scheme for Active Frequency Stabilization of a tunable laser. The
laser beam is splitted using a Beam Splitter into an output beam and
other beam that enters the feedback loop. The discriminant compares the
frequency of the beam that enters the loop with the frequency reference
and generates an error signal according to the discriminator coefficient of
the device. This signal is converted by the Loop Filter into a control signal
that is fed to the frequency-tunable laser to correct its frequency.
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2 Theoretical background

2.2 Atomic transition frequencies of Rubidium

We chose the atomic transition frequencies of Rubidium to be the frequency references
of the frequency-stabilization compact module that we constructed. These transition
frequencies are directly related to the atomic hyperfine structure of energy levels of
Rubidium.

The nomenclature [6] used to label the energy levels of the fine structure is n2S+1LJ ,
where n is the principal quantum number, S is the electron spin, L is the orbital
angular momentum of the electron and J is the total angular momentum of the
electron J⃗ = L⃗ + S⃗. To label the levels of hyperfine structure it is used the same
nomenclature but also specifying in parentheses the value of total angular momentum
of the atom F given by F⃗ = J⃗ + I⃗ where I is spin of the nucleus.

In different processes such as spontaneous emission, stimulated emission and stimu-
lated absorption, an electron bound to the atom changes from one of these energy
levels to another. The energy difference between the initial and final energy levels
is called transition energy ∆E = Ef − Ei, and also has an associated transition
frequency, |∆E| = hν0, where h is the Planck’s constant and ν0 is the transition
frequency.

Rubidium is an Alkali metal and therefore is an hydrogen-like atom, in the sense that
it has a weakly-bound single electron (valence electron) outside of closed shells filled
with electrons. Due to this, Rubidium has a relatively simple structure of energy
levels [6]. The ground state of the Rubidium’s valence electron is labeled as 52S1/2

according to the nomenclature previously explained. The first excited states of Rb
are the atomic transitions from the ground state levels 52S1/2 to the levels 52P1/2 (D1
line) and 52P3/2 (D2 line), showed in Figure 2.2. D2 line transitions are specially
important for having wavelengths of ∼780 nm, which is a wavelength used by many
commercial lasers. In this thesis we also work with these transition frequencies, which
are:
52S1/2(F = 2) → 52P3/2(F = 1, 2, 3) and 52S1/2(F = 3) → 52P3/2(F = 2, 3, 4) for
85Rb[8] and
52S1/2(F = 1) → 52P3/2(F = 0, 1, 2) and 52S1/2(F = 2) → 52P3/2(F = 1, 2, 3) for
87Rb.[9]
where 85Rb (72.2%) and 87Rb (27.8%) are the most abundant isotopes of Rubidium.
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2 Theoretical background

Figure 2.2: Schematic representation of the hyperfine structure of energy levels of the
isotopes 85Rb and 87Rb and the D2 transition lines that have associated
wavelengths at ∼780 nm. Extracted from [10].

2.3 Laser Absorption Spectroscopy

To create a discriminant capable of detecting deviations of the laser frequency from a
transition frequency of Rubidium we can exploit the fact that these same Rubidium
atoms are resonant with light of frequency equal to one of their transition frequencies.
A process that exhibits this resonance is the absorption[11], where a photon is
absorbed by an atom inducing an electronic transition between two energy levels. In
a cavity of volume V with n photons of frequency ν, the probability density that an
atom absorbs one of these photons is

Pab = n
c

V
σ(ν) (2.1)

where c is the speed of light and σ(ν) is the transition cross-section. This quantity is a
function of the frequency of the incident atom ν that peaks at the transition frequency
ν0 (resonance) and characterizes the interaction of the atom with light of frequency
ν. The area of the cross-section is

S =

∫ ∞

0
σ(ν)dν, (2.2)

known as the transition strength and represents the strength of the light-matter in-
teraction. At the same time it defines a normalized lineshape function g(ν) = σ(ν)/S,
such that

∫∞
0 g(ν)dν = 1.

An example of how we can make use of the absorption to detect atomic transitions is
measuring the transmission of a laser beam that passes through a Rubidium sample.
If the laser frequency is close to a transition frequency of Rubidium, there is a chance
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2 Theoretical background

–given by (2.2)– that the light is absorbed by the Rubidium atoms and the transmitted
power through the sample decreases. The transmitted power will be minimum when
the laser frequency is tuned exactly to the transition frequency, because then the
transition cross-section will reach its maximum value (peak cross-section σ(ν0)) and
the probability of absorption will be maximum. This method of detecting atomic
transition frequencies implies that we perform laser absorption spectroscopy.

2.4 Line broadening

The lineshape function g(ν) was defined in the previous Section as the normalized
shape of the transition cross-section σ(ν). Therefore, it is also a function of frequency
that peaks at the transition frequency and it governs the relative magnitude of the
interaction of the atom with photons over a range of frequencies. Different mechanisms
lead to the broadening [12] of the lineshape function. These broadening mechanisms
have an associated lineshape and the overall lineshape of the transition is given by the
convolution of all them.

2.4.1 Homogeneous broadening

Homogeneous broadening mechanisms are those in which all the atoms have the same
lineshapes and transition frequencies. An example is the natural or lifetime broad-
ening, which is a consequence of the uncertainty principle that relates the lifetime
of an excited state with the uncertainty of its energy and therefore of its frequency
(∆E = h∆ν = ℏ/τ where τ is the lifetime of the excited state). Other common
source of homogeneous line broadening are elastic collisions, which impart a phase
shift to the wave function associated with the energy level and lead to a broaden-
ing ∆ν = fcol/π where fcol is the collisions rate. Both mechanisms are associated
with a Lorentzian profile centered in the transition frequency. The convolution of two
Lorentzian functions is also a Lorentzian with a width equal to the sum of the other
two

g(ν) =
∆ν/2π

(ν − ν0)2 + (∆ν/2)2
, ∆ν =

1

2π

(
1

τ
+

2

fcol

)
(2.3)

where g(ν) is a Lorentzian lineshape of width ∆ν

2.4.2 Doppler broadening

In contrast with the natural and collisions broadening, the Doppler broadening
mechanism is a type of inhomogeneous broadening where atoms with different
velocities have different transition frequencies.

To see this we can consider an atom moving with some velocity component vz ≪ c
(being c the speed of light) in the direction of propagation z of a monochromatic
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2 Theoretical background

incident light beam of frequency ν. As a result of the Doppler effect, the frequency of
the light observed by this atom is

ν ′ = (1− vz
c
)ν (2.4)

with vz > 0 for atoms moving with velocity component in the direction of propagation
of the laser beam.

Figure 2.3: Graphic interpretation of the Doppler-frequency shift observed by atoms
moving with different velocity components in the direction of the incident
light. Atom 1 moves in the opposite direction of propagation of the incident
light and therefore observes a higher frequency of the incident light due
to Doppler effect. Atom 2 moves in the direction of propagation of light
and therefore observes a lower frequency. Atoms 3 and 4 don’t have any
velocity component in the direction of propagation of the incident light,
and don’t experience any Doppler effect.

Therefore, the resonant frequency for this atoms will be given by:

ν ′ = ν0 = (1− vz
c
)ν ′0 −→ ν ′0 =

ν0
1− vz

c

≈ (1 +
vz
c
)ν0 (2.5)

or equivalently, when the laser is tuned to a frequency ν, it will be resonant with
atoms moving with

vz =

(
ν − ν0

ν

)
c. (2.6)

Since the lineshapes are functions centered in the resonant frequency, they are also
shifted from g(ν) to

g
(
ν − vz

c
ν0

)
≡ gvz(ν) (2.7)
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2 Theoretical background

which means that in the medium there are atoms with different transition frequen-
cies depending on their velocity component in the direction of the incident light vz
(inhomogeneous broadening). Typically, the atoms of the gas exhibit a Maxwellian
distribution of velocities in one spatial direction (e.g. z direction), given by:

p(vz) =

√
M

2πkBT
exp

[
− Mv2z
2kBT

]
(2.8)

where M is the mass of the atom, kB is the Boltzmann constant and T is the temper-
ature. The overall inhomogeneous Doppler-broadened lineshape function ḡ(ν) is an
average of all the lineshape functions weighted by the fraction of atoms moving with
vz (given by (2.8))

ḡ(ν) = ⟨gvz(ν)⟩ =
∫ ∞

−∞
g
(
ν − ν0

vz
c

)
p(vz)dvz. (2.9)

This is the convolution of a Lorentzian function (assuming that g(ν) is Lorentzian)
and a Gaussian function, which is the definition of the Voigt profile[13].

0

ℊ- 0
vz

c


ℊ()

ℊ()

0
vz

c

ν

Figure 2.4: Representation of the overall lineshape function of a Doppler-broadened
medium ḡ(ν). The overall lineshape is obtained as the average of the
lineshape functions g(ν − ν0

vz
c ) of atoms moving with velocity component

vz, weighted by the fraction of atoms moving with velocity vz, given by
the Maxwell-Boltzmann distribution of velocities in this direction. This
weight is shown in the Figure in the form of a smaller amplitude for the
lineshape g(ν − ν0

vz
c ) of atoms moving vz ̸= 0 than the lineshape g(ν) for

atoms moving with vz = 0, because the Maxwellian distribution provides
that the fraction of atoms to move with vz = 0 is bigger than the fraction
of atoms moving with vz ̸= 0.

The width of the Voigt profile can be estimated from the widths of the Lorentzian
and Gaussian distribution as:

fV ≈ fL/2 +
√

f2
L/4 + f2

G (2.10)

where fL and fG are the FWHM of the Lorentzian and Gaussian profiles respectively.
Therefore fV ≥ fG. The Gaussian linewidth at room temperature is for the transi-
tion frequencies of the D2 line (λ0 ∼780 nm), from the Maxwellian distribution of
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2 Theoretical background

velocities (2.8), fG = 2
√
2 ln 2kBT/Mλ2

0 ≈500MHz while the transition frequencies
of the Rubidium D2 line are spaced by 30-300 MHz[8][9]. This means that the in-
dividual lineshapes at the transition frequencies of the hyperfine structure of Rb are
swallowed by a bigger lineshape from the Doppler-broadening. Therefore, the reso-
nances at the different transition frequencies can no longer be resolved so the method
that we proposed in Section 2.3 to detect when the laser is tuned to a transition
frequency of Rb cannot be applied. However, there are techniques to overcome the
problem of Doppler-broadening so the transition frequencies can be identified in a
Doppler-broadened medium. An example is the Saturated Absorption Spectroscopy
method.

2.5 Saturated Absorption Spectroscopy

A way of overcoming the Doppler broadening and therefore being able to detect the
transition frequencies of Rubidium is using the method called Saturated Absorption
Spectroscopy (SAS)[14]. In this technique, two counter-propagating overlapping laser
beams of exactly the same frequency interact with the atoms of the gas. This technique
makes use of the saturation of the absorption in the medium to produce peaks of
transmitted intensity of one of the two beams through the sample when their frequency
is tuned to a transition frequencies of Rb. Using this method the transition frequencies
can be detected despite the Doppler broadening.

2.5.1 Saturated Absorption in a Doppler-broadened medium

The loss of intensity due to absorption after the beam has traveled a distance z in the
absorbing medium [15] is given by:

I(z) = I(0)exp [−αz] (2.11)

where α is the absorption coefficient. In a saturable medium, the absorption coefficient
decreases with the increasing incident optical intensity (saturation).

α(ν) =
α0(ν)

1 + I/Is(ν)
, (2.12)

where α0(ν) is the unsaturated absorption coefficient and Is(ν) is the saturation
intensity. Both α0(ν) and Is(ν) depend on ν since they are proportional to the
transition cross-section σ(ν) (and hence to g(ν)).

In the Doppler-broadened medium, each group of atoms moving with vz have associ-
ated their own absorption coefficient, given by

αvz(ν) =
α0vz(ν)

1 + I/Isvz(ν)
(2.13)
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where now α0vz(ν) and Isvz(ν) are proportional to gvz(ν). When a laser beam of
frequency ν interacts with atoms in a Doppler-broadened medium it will produce
saturation of the absorption coefficient αvz associated with atoms with velocity com-
ponent vz = ν−ν0

ν c. When the intensity is large compared to the saturation intensity
Is(ν) ≪ I, the absorption coefficient saturates and there is no net absorption. In
an approximated model of only two atomic energy levels (ground state and excited
state), this takes place when the population of atoms in the ground state is the same
as the population of atoms in the excited state.

2.5.2 Working principle behind SAS

As stated before, in this technique two counterpropagating and overlapping laser
beams travel through an atomic gas, which is a saturable Doppler-broadened medium,
and are used to produce Doppler-free spectroscopy. One of the beams, called pump
beam has typically more optical power than the other, called probe beam. When the
frequency of these beams is different from the resonant frequency of the atoms ν0, one
beam interacts with the group of atoms that move with some velocity component in z
direction vz, while the other beam, since they are counterpointing, interacts with the
group of atoms moving with −vz. This produces some saturation in the absorption
coefficients αvz and α−vz or equivalently, in the two energy levels approximation,
it produces some depopulation of the atoms in the ground state moving with vz
and −vz, as represented in Figure 2.5a. However, when the frequency is tuned to
the resonant frequency, both beams will address the same group of atoms, which
are those moving with vz ≈ 0. When this happens, the strong pump beam excites
this group of atoms and causes the saturation of the absorption coefficient αvz=0.
Therefore, the pump beam serves to bleach the absorptive medium leading to an
increase of the transmission of the probe beam through the sample, which is reflected
as a peak of its transmitted intensity when the frequency of the beams is tuned to a
resonant transition frequency of the atomic gas.

12



2 Theoretical background

(a) ν < ν0 (b) ν = ν0

Figure 2.5: Distribution of the number of atoms in the ground state Ngr with velocity
component vz (a) when the frequency of the laser ν is tuned to a frequency
smaller than the transition frequency ν0. The pump beam interacts with
atom moving with vz =

(
ν−ν0
ν

)
c and the probe beam with atoms moving

with vz = −
(
ν−ν0
ν

)
c since they are counter-propagating. (b) When the

laser frequency is tuned to the resonant frequency both beam interact with
the same group of atoms, those moving with vz ≈ 0.

Crossover frequencies

When two transitions with frequencies ν1 and ν2 share a ground state and differ in
frequency by less than the Doppler linewidth, apart from the hyperfine structure
peaks, we can also have other peaks in between, called crossover frequencies that
correspond to νc =

ν1+ν2
2 .

To illustrate this we can imagine a situation where our laser is tuned to a frequency
ν1 < ν < ν2. Considering vz > 0 in the direction of the probe beam and defining from

(2.6) vzj =
|ν−νj |

ν c (j = 1, 2). The pump beam will interact with two different groups
of atoms: those moving with −vz1 and those moving with +vz2, while the counter-
propagating probe beam will address those atoms moving with +vz1 and −vz2. As the
frequency is increased, vz1 increases and vz2 decreases. Looking at Figure 2.6a, the
ground-state depopulation holes produced by the probe beam move to the left while
the holes produced by the probe beam move to the right. Therefore, at some point
the two holes will encounter each other, leading to the same situation described before
where the pump beam excites a group of atoms and the probe beam that addresses the
same group of atoms experiences an increase of its transmission through the medium.
The only difference is that the pump beam and the probe beam produce excitation
to different energy levels, but the effect is equivalent since the population of atoms
in the ground state is depleted by the pump beam, and the probe beam finds fewer
atoms in the ground state to excite, leading again to an increase of its transmission
through the atomic gas. This situation occurs when vz1 = vz2, condition that gives
the crossover frequency:

13
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(
νc − ν1

νc

)
c =

(
ν2 − νc

νc

)
c −→ νc =

ν1 + ν2
2

(2.14)

If we measure the transmission of the probe beam through the Rb vapor cell, at this
frequency there will also be a transmission peak.

(a) ν1 < ν < ν2 (b) ν = ν1+ν2

2 = νc

Figure 2.6: Distribution of the number of atoms in the ground state Ngr with velocity
component vz:
(a) When the frequency of the laser is tuned to a frequency ν1 < ν < ν2
being ν1 and ν2 two different transition frequencies spaced by less than
the width of the Maxwellian distribution of velocities. The pump beam
interacts with atoms moving with vz = ν1−ν

ν c and vz = ν−ν2
ν c while the

probe beam with atoms moving with vz = −ν−ν1
ν c and atoms moving

with vz =
ν2−ν
ν c because propagates in the opposite direction of the pump

beam.
(b) when the laser frequency is tuned to the crossover frequency νc =

ν1+ν2
2

both beams interact with atoms moving with vz = ±ν2−ν1
ν1+ν2

c producing sat-
uration of the absorption and hence resulting in a increase of the trans-
mission of the probe beam at this frequency.

Connecting with the purpose of using this method to construct our discriminant, this
technique allows us to detect when the laser is tuned to a transition frequency due to
the increase of the transmission of the probe beam through the Rubidium sample at
this frequencies. The optical intensity signal of the probe beam transmitted through
the sample, which we can call the ’SAS signal’ IT (ν), presents resonant peaks at the
transition and crossover frequencies. The linewidth of these peaks can approach the
natural width of the atomic transitions, so the different transition frequencies from the
hyperfine structure energy levels can be resolved and distinguished from each other
using the Saturated Absorption Spectroscopy method.
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2 Theoretical background

Figure 2.7: Measurement of the SAS signal extracted from [16]. The transmission of
the probe beam through a Rb sample is presented as a function of the
drive current of a tunable diode laser. Different values of the current cor-
respond to different lasing wavelegths of the laser. In the picture they can
be seen the Doppler-broadening profile in the decrease of the transmission
and inside the Doppler-broadened profile the transmission peaks that cor-
respond to the D2 line transition and crossover frequencies of 85Rb and
87Rb.

2.6 Frequency Modulation Saturated Absorption
Spectroscopy

We want to construct a compact discriminant device that can be used to stabilize
a tunable laser onto a transition frequency of Rb. With the SAS method described
in Section 2.5 we obtain a signal IT (ν) with narrow peaks at the different transition
frequencies. However, in Section 2.1 we stated that the discriminant of a frequency-
stabilization loop must provide a signal –the error signal– that is proportional to devia-
tions of the laser frequency from a reference frequency. The SAS signal IT (ν) does not
have this characteristics, since it is resonant instead of linear at the transition frequen-
cies that we want to use as reference in our compact discriminant. Nevertheless, this
kind of signal can be obtained from the SAS signal by performing Frequency Modula-
tion of the light field used in the SAS method. The technique of modulating the light
field to perform spectroscopy is known as Frequency Modulation Spectroscopy[19]. We
call Frequency Modulation Saturated Absorption Spectroscopy to the combination of
this method and the Saturated Absorption Spectroscopy method (FM SAS).
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2.6.1 Frequency and Phase Modulation

We can modulate the frequency of the light field used in the SAS method described in
Section 2.5 in order to generate an error signal with one of the transition frequencies
of Rb as frequency reference, such that the error signal is proportional to deviation of
the laser frequency to this frequency reference. In general, modulation is the process
of encoding information from a message source into a carrier signal. Let the carrier
signal be

x(t) = Ace
iωct (2.15)

where ωc is the carrier angular frequency and Ac its amplitude. Specifically, in Fre-
quency Modulation [17] the frequency ω of the carrier wave is varied at every instant.
Frequency and Phase Modulation cannot be separated from each other, since the
instantaneous angular frequency and the phase are related by

ω(t) =
dφ

dt
. (2.16)

Hence, if the phase is modulated by a message signal m(t) such that

φ(t) = ωct+m(t). (2.17)

then the modulation of the frequency, from (2.16), will be

ω(t) = ωc +
dm(t)

dt
(2.18)

This relation is important since in fact we perform Phase Modulation of the light
field, but it can be interpreted as an equivalent Frequency Modulation that provides
an instantaneous angular frequency given by (2.20).

Thereby, considering a sinusoidal message signal, the corresponding phase-modulated
signal is

xPM (t) = Ace
i(ωct+β sinΩt), (2.19)

the instantaneous phase is given by φ(t) = ωct + β sinΩt and the corresponding
frequency, given by (2.20), is:

ω(t) = ωc + βΩcosΩt (2.20)

where Ω is the frequency of the message signal, called modulation frequency and
β is its amplitude of the message signal, called modulation index. Therefore, a
sinusoidal Phase Modulation corresponds as well to sinusoidal Frequency Modulation
but with a phase lag of 90º. The maximum deviation of the frequency from the
carrier frequency is given by ∆ω = βΩ, called frequency deviation. The sinusoidal
frequency modulation of the light field is used in the method of Frequency Modulation
Spectroscopy that we use in Section 2.29 to obtain the error signal with a transition
frequency of Rb as frequency reference..
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The expression (2.19) can be rewritten in terms of a series of Bessel functions:

xPM (t) = Ace
iωct

{
J0(β) +

∞∑
k=1

Jk(β)e
ikΩt +

∞∑
k=1

(−1)kJk(β)e
−ikΩt

}
(2.21)

where Jk(β) are the k
th order Bessel functions of the first kind. This can be interpreted

as an infinite set of waves that propagate with frequencies ωc, ωc ± Ω, ωc,±2Ω,...,
and whose relative amplitudes are determined by the Bessel functions J0(β), ±J1(β),
±J2(β)..., which individually carry part of the power content of the phase-modulated
signal. To see this more clearly one can look at the frequencies spectrum evaluating
the Fourier transform of xPM . Using the fact that the Fourier transform of eiω0t is
δ(ω − ω0) it follows that

F(xPM )(ω) = Ac[J0(β)δ(ω−ωc)+
∞∑
k=1

Jk(β)δ(ω−(ωc+kΩ))+

∞∑
k=1

(−1)kJk(β)δ(ω−(ωc−kΩ))]

(2.22)

(a) β = 1 (b) β = 2 (c) β = 3

Figure 2.8: Frequency Spectrum of a phase-modulated signal for different values of
the modulation index β. The relative amplitudes of the bands are given
by J2

k (β) and represent their power content. The spectrum is symmetric
respect to the carrier frequency and as the modulation index increases,
more sidebands appear.

This corresponds to an infinite set of delta peaks equally spaced by an integer number
of times the modulation frequency Ω. Again, the amplitude of the bands in the
frequency spectrum is proportional to the Bessel functions Jk(β)[18]. The band at the
carrier frequency is called the carrier band and the rest are called sidebands i.e. bands
at ωc ±Ω are the first two sidebands. This nomenclature is often also used to address
the waves/Fourier components oscillating with these frequencies. The spectrum of
bands of a phase-modulated signal described here is relevant for the characterization
of the Frequency Modulation of the light described in Section 3.1 .This characterization
is later used to investigate how we can optimize the laser stabilization in Section 3.2.
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2.6.2 Working principle behind the generation of the error signal

To perform Frequency Modulation of the light field implies that the temporal part
of the electric light field acts now as the carrier signal discussed in Section 2.6.1.
The Doppler-free spectroscopy described in Section 2.5, provides an optical intensity
signal IT (ω) with narrow peaks centered in the transition frequencies (and crossover
frequencies). The sinusoidal Frequency Modulation of this signal leads to IT (ω) −→
IT (ωc + βΩcosΩt). If the amplitude of the sinusoidal Frequency Modulation 2∆ω =
2βΩ is smaller than the linewidth of the resonance [20], then the frequency-modulated
SAS signal varies over time as:

IT (ωc + βΩcosΩt) ≈ IT (ωc) +
dIT
dω

∣∣∣
ωc

Ωβ cosΩt. (2.23)

this is the first order Taylor expansion of IT (ωc + βΩcosΩt) around ωc, valid for
ωc ≫ βΩ (small frequency deviation ∆ω = βΩ from the carrier frequency ωc), which
is true in our case since we use modulation frequencies of the order ∼ 107 Hz and
modulation indices of β ∼ 1, while the optical frequency of the laser is of the order of
∼ 1015 Hz. The term dIT

dωc
from the Taylor-expanded expression (2.23) will constitute

our error signal [21].

Figure 2.9 provides a graphic interpretation of how the modulation of the light fre-
quency can lead to this expression. Considering a situation where the laser frequency
(carrier frequency ωc) is in the vicinity of a resonant peak of the SAS signal IT (ω)
and the deviation frequency ∆ω is small compared to the linewidth of this resonance,
then the sinusoidal modulation of the laser frequency leads to the periodic increase
and decrease of the intensity signal IT (ω). This periodic increase and decrease of the
signal is synchronized with the periodicity of the modulation frequency that scans a
small region of the resonance. Furthermore, the maximum increase or decrease of the
signal is bigger when the slope of the resonance is also bigger because the difference
between IT (ω) and IT (ωC ±∆ω) is greater. This situation can also be described in a
more quantitative way that connects with (2.23) by considering that, since the devi-
ation frequency ∆ω is small compared to the linewidth of the resonant peak, we can
approximate the lineshape of the signal IT (ω) to an straight line in the region ωc±∆ω.
A concept that connects to the linear approximation of a function is the first order
Taylor expansion, which we can evaluate in this case around the center point ωc of
the approximation region, giving

IT (ω) ≈ IT (ωc) +
dIT
dω

∣∣∣
ωc

(ω − ωc) (2.24)

which is the equation of a straight line tangent to the function IT (ω) at ωc. Now if we
consider the modulation of the frequency ω(t) = ωc + βΩcosΩt it leads to the same
expression (2.23), where the the term cosΩt describes how the intensity signal varies
synchronously with the instantaneous frequency ω(t) and the maximum deviation of
the signal IT (ω(t)) from its value in absence of modulation (at ωc) is given by the
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derivative dIT
dω at ωc, as we qualitatively exposed before through the concept of the

slope of the function.

Figure 2.9: Graphic interpretation of the effect of the frequency modulation of the
light field in the SAS method when the deviation frequency is smaller than
the linewidth of a resonance of the signal IT (ω). The sinusoidal variation
over time of the light frequency, shown in red in the Figure, leads to a
synchronized and also sinusoidal variation of the signal IT (ω) from its
value when there is no modulation (at the carrier frequency ωc), shown
in blue in the Figure. The amplitude of the sinusoidal variation of the
SAS signal from its value at a given ωc is proportional to the derivative
of the SAS signal at that frequency, shown in a graph below. Thus, in 1
the derivative is maximum so t is the amplitude of the sinusoidal variation
while in 2, the resonance, the derivative is 0, leading to almost no variation
with time of the SAS signal from its value at the resonance IT (ω0). For
ωc > ω0 the derivative is negative, which results in a 180º phase shift of
the sinusoidal variation respect to 1 and the magnitude of the derivative
is again maximum .

To see that the term dIT
dω satisfies the conditions to be considered as an error signal

like the one that we described in Section 2.1 we can consider a resonant peak of the
SAS signal IT (ω) and approximate this resonance to a Lorentzian lineshape. If we
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look at the derivative of a Lorentzian with peak value I0 and width Γ centered in the
resonance frequency ω0:

IT (ω) ≈ L(ω) =
I0

1 +
(
ω−ω0
2Γ

)2 dL

dω
=

−I02(ω − ω0)/(Γ/2)
2[

1 +
(
ω−ω0
Γ/2

)2]2 (2.25)

and for small deviations from the resonant frequency ω ≈ ω0

dL

dω
≈ 2I0

(Γ/2)2
(ω0 − ω) for ω ≈ ω0. (2.26)

it follows that the relation between the frequency and the derivative is approximately
linear, which is the condition that we required for the error signal in Section 2.1.
Furthermore, deviations of the laser frequency towards frequencies bigger than the
resonant frequency lead to negative values of the signal and vice versa, while at the
resonant frequency the derivative is zero.

The optical signal IT (ω + βΩcosΩt) can be converted into an electrical signal by
measuring it with a photodetector. Now, to obtain a DC error signal that can be

assimilated by the Loop Filter the derivative term dIT
dω

∣∣∣
ωc

Ωβ cosΩt, which is an AC

term, must be demodulated. This can be done electronically by using a mixer and a
low-pass filter. The mixer is a device that provides as an output the product of two
input signals. Therefore, by feeding the mixer with the frequency-modulated intensity
signal and a RF sinusoidal signal cosΩt, which can be provided by a function generator,
we obtain the output:

IT (ωc + βΩcosΩt) cosΩt = IT (ωc) cosΩt+Ωβ
dIT
dω

∣∣∣
ωc

cos2 2Ωt (2.27)

and using the trigonometric relation cos a cos b = 1
2 [cos (a+ b) + cos (a− b)] it follows

IT (ωc + βΩcosΩt) cosΩt = IT (ωc) cosΩt+
1

2
Ωβ

dIT
dω

∣∣∣
ωc

[1 + cos 2Ωt] (2.28)

where there is a DC term proportional to the derivative of the spectral feature. The
rest of the terms oscillate with Ω and 2Ω and can be suppressed using a low-pass-filter,
leaving only the term

ϵ =
1

2
Ωβ

dIT
dω

∣∣∣
ωc

≈ 1

2
Ωβ

2I0
(Γ/2)2

(ω0 − ωc) for ωc ≈ ω0. (2.29)

which is the error signal.
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Figure 2.10: Scheme for obtaining a DC error signal with one of the transition fre-
quencies of Rubidium as a lock point. the beam output of a DFB tunable
laser undergoes Frequency Modulation by the EOM, voltage-controlled
by a function generator with a modulation frequency fm. The optical
signal after passing through the spectroscopy setup IT (ω+ βΩcosΩt), is
measured by a photodetector (PD) and is demodulated by the mixer and
the low-pass filter (LPF) to obtain a DC error signal.

As mentioned in Section 2.1, a very important feature in frequency stabilization is the
signal-to-noise ratio (SNR) of the error signal. This is the response of the discriminant
in form of a voltage when there are small deviations of the laser frequency from the
reference frequency. With the method previously described we obtain the error signal
as a signal proportional to the derivative of a resonant lineshape. This derivative
presents in general a linear regime near the resonant frequency as it can be seen
in expression (2.26) and in Figure 2.11 (considering the resonance as a Lorentzian).
The error signal is proportional to this derivative and the corresponding discriminator
factor is given by (2.29). This expression predicts that the discriminator coefficient and
therefore the SNR can be enhanced by increasing the deviation frequency ∆ω = βΩ.
In Section 3.2 we investigate this dependency of the slope of the error signal with the
deviation frequency.

Figure 2.11: Derivative of a Lorentzian as an error signal. There are presented to-
gether two error signals with different amplitudes: the red signal has
bigger amplitude than the blue signal and therefore its slope, indicated
with the dashed line, is also bigger (bigger signal-to-noise ratio).
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3 Experimental setups and results

In this Section we describe the different setups used to put into practice the methods
explained in Section 2 and how they are implemented in the compact discriminant
module. We also describe the setup and method used to characterize the frequency
modulation of the light field. We use this characterization in the investigation of the
dependency of the SNR of the error signal with the deviation frequency as discussed
in the previous section. We also include the setup used for this investigation, that
requires measuring directly the error signal provided by the discriminant setup. At the
same time, we present and discuss the results obtained for the FM characterization
and the research of the SNR dependency with the modulation of the light in the
Frequency Modulation Saturated Absorption Spectroscopy method.

3.1 Characterization of the Frequency Modulation of the
light field

As discussed in section 2.6.2, we sinusoidally modulate the frequency of the light
field used to perform Saturated Absorption Spectroscopy in order to generate an error
signal in which the frequency reference is an atomic transition frequency of Rubidium.
Expression 2.26 predicts that the signal-to-noise ratio (SNR) provided by this error
signal is proportional to the amplitude of the sinusoidal Frequency Modulation applied
to the light field, called deviation frequency. We want to investigate the relation
of the SNR with the deviation frequency because higher SNR can provide a better
frequency stabilization. To do such an investigation we first must have control of the
deviation frequency. This requires to understand how the light field is modulated in
practice: using an Electro-Optic Modulator (EOM). This device produces a sinusoidal
Phase Modulation that from relation (2.16) we know that results in an also sinusoidal
Frequency Modulation. The frequency deviation ∆ω is related to the modulation
index β and the modulation frequency Ω of the Phase Modulation by ∆ω = βΩ, as
stated in Section 2.6.1. Therefore, the aim of this Section is to control the values of
the modulation index and modulation frequency produced by the EOM in order to
have control of the deviation frequency.

3.1.1 Phase Modulation of the light field: Electro-Optic Modulator

To produce Phase Modulation of a laser light field we use an electro-optic modulator
(EOM). To control the values of the modulation index and the modulation frequency
of the Phase Modulation we firs must understand the working principle behind the
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EOM[22], which is based on the electro-optic effect.

The electro-optic effect is the dependency of the refractive index of some materials with
the electric field. In particular, in the Pockels electro-optic effect, the electro-optic
material shows a linear dependency of its refractive index with the applied electric
field:

n(E) ≈ n− 1

2
rn3E (3.1)

where n is the refractive index in absence of applied field, E is the magnitude of the
applied electric field and r is the Pockels coefficient. This coefficient is characteristic
of the electro-optic material and since these are usually anisotropic crystals the
coefficient is different depending on the direction of propagation of the light and the
direction of the applied electric field.

An electro-optic modulator is a Pockels cell, this is essentially an electro-optic crystal
placed between two metal plane plates that work as electrodes to which a potential
V is applied in order to create an electric field E. The phase shift induced to a light
field that passes through a Pockels cell of length L is

φ = n(E)kL = φ0 − π
rn3EL

λ
(3.2)

where φ0 = 3πnL/λ, and λ is the free-space wavelength. Using that E = V/d (d is
the separation between the electrodes):

φ = n(E)kL = φ0 − π
V

Vπ
(3.3)

where Vπ = d
L

λ
πrn3 is the half-wave voltage (applied voltage at which the phase shift

is π). Therefore, applying a sinusoidal potential V (t) = V0 sinΩt to the plates (e.g.
using a function generator), Phase Modulation can be produced:

φ = n(E)kL = φ0 − π
V0

Vπ
sinΩt (3.4)

and thereby, comparing with the sinusoidal phase modulation described in Section
2.6.1, the modulation index is given by

β = π
V0

Vπ
. (3.5)

Hence, the EOM can produce sinusoidal Phase Modulation of the laser light field, that
from expression (2.20) we know that is equivalent to an also sinusoidal Frequency
Modulation. The angular modulation frequency Ω of the FM is known since it is
set externally by the function generator that drives the EOM. On the other hand,
the modulation index β is proportional to the amplitude of the sinusoidal voltage
applied to the EOM. Therefore, to have control of the value of the modulation index
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we must characterize this relation, which requires finding the value of the parameter
π
Vπ

. Relation (3.5) does not predict any dependency of the modulation index with the
modulation frequency fm. In practice, the Vπ parameter and therefore the modulation
index will depend slightly on the modulation frequency. According to the company
iXblue, that supplied the NIR-MPX800-LN-0.1 EOM that we use, the dependency
with fm of the half-wave voltage for light of 780 nn wavelength is:

Vπ(fm) ≈ (1 + 2.76× 10−9fm)× 1.54 V, (3.6)

for modulation frequencies fm below the electro-optical bandwidth of the EOM (fm <
150 MHz). From 3.5, the predicted dependency of the modulation index with fm is

β(V0, fm) =
πV0

(1 + 2.76× 10−6fm)× 1.54
(3.7)

Nevertheless, the supplier company iXblue warns that even though the relation was
derived making use of data from the device, this calculation is theoretical and ex-
trapolated from a measurement at fm=50 kHz, so it must be taken only as guideline.
For this reason, we characterize the relation of the modulation index and the applied
voltage at different modulation frequencies that we use in the investigation of the
SNR.

3.1.2 Setup for the characterization of the FM of the light field

To characterize the relation between the modulation index and applied voltage to the
EOM we can make use of one of the features of a sinusoidally phase-modulated signal
described in Section 2.6.1, which is that its frequency spectrum consists of a series of
bands (Fourier components with frequencies ωc, ωc ± Ω, ωc ± 2Ω,...) whose relative
amplitude depend on the modulation index. Therefore, we want to construct a setup
to obtain a measurement of the frequency spectrum of a phase-modulated signal,
because then we can extract the value of the modulation index from the relative am-
plitude of the bands. To measure directly the frequency spectrum would require that
we are able to detect the optical frequencies of the modulated field. However, response
time of photodetectors (∼ 10−11 s) is not small enough to measure oscillations of an
optical field (∼ 10−15 s). For this reason, we make use of the so-called ’beat signal’[23].

We consider two monochromatic linearly polarized light beams E⃗1 and E⃗2 oscillating
at optical frequencies ω1 and ω2 such that

E⃗j = e⃗jEj cos (k⃗j r⃗ − ωjt+ φj), j = 1, 2 (3.8)

where e⃗j is the polarization vector of the field j, Ej its amplitude and k⃗j its
wavevector. Their optical power is given by Pj =

1
2ϵ0cE

2
jAeff being Aeff the effective

area perpendicular to the direction of propagation of the light beam, c the speed of
light and ϵ0 the vacuum permitivity.
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If this fields are superimposed in a photodetector. The photocurrent measured by the
detector i(t) exhibits a term oscillating at |ω1 − ω2|, which is the ’beat signal’

i(t) = Rλ

{
P1 + P2 + e⃗1e⃗2

√
P1P2 cos [(k⃗1 − k⃗2)r⃗ − (ω1 − ω2)t+ (φ1 − φ2)]

}
(3.9)

where Rλ is the responsivity of the photodetector (measure of the optical-to-electrical
conversion efficiency of the detector), P1 and P2 are the optical powers of the two
fields, e⃗1 and e⃗2 their polarizations and φ1 and φ2 their phases. The photocurrent
term at |ω1 − ω2| is the beat signal, and can be measured if the difference |ω1 − ω2|
is smaller than the bandwidth of the photodetector, the beams are collinear k⃗1 = k⃗2
and the polarizations are not orthogonal e⃗1e⃗2 ̸= 0.

Therefore, instead of measuring directly the frequency spectrum of a phase-modulated
light beam at optical frequencies, we can measure a ’beat spectrum’, which is con-
formed by the beat signals of the different bands from the phase-modulated field
beating with an unmodulated optical field that has a slightly different frequency
difference respect to the carrier frequency of the phase-modulated signal. If the
difference in frequency of the unmodulated signal with the bands is smaller than the
bandwidth of the photodetector then the ’beat spectrum’ can be measured.

Given that Pm is the optical power of the phase-modulated wave, then the optical
power content of one band is Pk = PmJ2

k (β) with k = 0 for the carrier band and
k = 1, 2, 3, ..., for the kth pair of sidebands. Now, given that Pu is the optical power
of the unmodulated wave that beats with the different bands, then the amplitude

of one of the produced beat bands, according to 3.9, is proportional to
√

PmJ2
k (β).

Therefore, the relative amplitudes of the beat bands are determined by |Jk(β)| (and
their power by J2

k (β)). Knowing what is the relation between the amplitudes of the
beat bands that we measure is essential for the method that we want to employ to
determine the modulation index β. This is because the method relies on the fact that
the relative amplitudes of the bands are determined ultimately by the value of the
modulation index, which is true also for the beat bands that we measure.
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(a)

(b)

Figure 3.1: (a) Scheme of the frequency spectrum of bands from the phase-modulated
wave and of the wave frequency-shifted by 150 MHz in terms of their power
content (b) resulting spectrum of beat bands centered at 150 MHz

The setup presented in Figure 3.2 allows us to measure the frequency spectrum of
the beat of a phase-modulated light with another light field frequency-shifted 150
MHz with respect to the carrier band. These beat signals oscillate with 150 MHz,
150 MHz ± fm, 150 MHz ± 2fm,..., –where fm is the modulation frequency– thereby
forming a frequency spectrum equivalent to that of the phase-modulated light field
but centered at 150 MHz.
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Figure 3.2: Scheme of the experimental setup used to measure the beat signal of a
phase-modulate laser field with a single frequency laser light field. Two
fibers with laser light from the same source (same frequency) are beat
together. One of the beams is phase-modulated by the voltage-controlled
EOM and the other is frequency shifted by 150 MHz from the carrier
frequency of the phase-modulated beam using an AOM. The beams are
superimposed using a Fiber Splitter (FS) and the beat signal is measured
by a fast photodetector (PD) and amplified. The spectrum of beat bands
is displayed by the Spectrum Analyzer.

Initially, two beams are separated from the same laser source: a Distributed Feedback
Laser Diode (DFB), which is a tunable laser in the range 767-780 nm. The two
outputs, at the same optical frequency (λ ∼ 780 nm) are coupled into different optical
fibers. One of the fibers (Fiber 1) is coupled to a Lithium Niobate electro-optic phase
modulator (EOM) model NIR-MPX800-LN-0.1 supplied by iXblue. The light field
undergoes phase-modulation after traveling through the EOM, which is controlled by
a function generator that enables us to set the modulation frequency and the applied
voltage (and hence the modulation index). The other light field, contained in Fiber 2,
is frequency-shifted using a 780 nm Fiber Coupled Acousto-Optic Modulator (AOM)
model T-M150-0.5C2W-3-F2S from the supplier Gooch & Housego. This device is
externally controlled by a driver at a power of 27 dBm and a frequency of 150 MHz
frequency and produces a frequency upshift also of 150 MHz on the light field of the
beam 2. Then, both beams are overlapped using a 50-50 Fiber Splitter (FS) provided
by Evanescent Optics, which takes 50% of power of each input beam and mixes them
into two outputs, each of them with 50% of both beams. The Fiber Splitter provides
the spatial overlapping required for the beat signal measurement. One of the fiber
outputs of the Fiber Splitter, with an optical power of 3 mW is detected by a fast
photodiode provided by Hamamatsu. The photocurrent measured by the photodiode
is then amplified and analyzed by a Rohde & Schwartz HMS-X Spectrum Analyzer,
which displays the frequency spectrum of the beat bands centered at 150 MHz.

To extract the value of β from the spectrum of beat bands displayed by the Spectrum
Analyzer, we create a model consisting of peak functions (e.g. Gaussian or Lorentzian
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profiles) that represent the different beat bands. Thus, the functions are centered
in the beat frequencies and their amplitudes are proportional to J2

k (β), different
depending on the kth beat band that they replicate. Fitting this model to the data
from the Spectrum Analyzer implies that we find the value of β that provides the
best amplitude relations between the functions so they suit the beat bands.

The Rhode & Schwartz HMS-x is a swept-tuned Spectrum Analyzer that displays
the magnitude of the detected Fourier components (in this case the different bands)
in terms of their power versus their frequency. These type of Spectrum Analyzers
operate with bandpass filters, which are devices that pass certain frequencies and reject
others. The frequency response of the filter expresses the gain that it provides (ratio
of the output signal power to the input signal power) in terms of the frequency of the
input signal. The function that determines the frequency response of the bandpass
filter is known as the shape of the filter and the FWHM of this function is known
as the bandwidth of the filter. The bandwidth of the bandpass filter used in the
Spectrum Analyzer determines the spectral resolution of the instrument (the minimum
bandwidth detectable by the instrument) and for this reason is called Resolution
Bandwidth (RBW). If the bandwidth of the input signal to be analyzed is smaller
than the bandwidth of the bandpass filter, then the spectrum of this signal will be
displayed by the Spectrum Analyzer with the characteristic lineshape and bandwidth
of the bandpass filter [24]. The HMS-X Spectrum Analyzer automatically sets a value
of the RBW that allows a first measurement of the spectrum of an input signal.
However, the RBW can be manually changed. This is relevant for the method that
we use to obtain the value of the modulation index at different voltages since in
this method we want to fit a model of functions that represent the spectrum of beat
bands to the data points of the spectrum measured with the Spectrum Analyze. With
the automatic settings of RBW, the bands are displayed as almost single-frequency
Fourier components. This is a good feature when we want to measure the frequencies
of the bands but in this case it makes difficult the fit of any function to the profile
of the bands. However, by setting a RBW bigger than the bandwidth of the input
bands we can obtain an spectrum of bands displayed with a bigger bandwidth and the
characteristic shape of the bandpass filter imprinted IN the bands, which is easier to
modelize than shape of the near single-frequency bands. Furthermore, in this method
the accuracy of the value of β depends on how good is the fit of the model of peak
functions to the bands. For this reason, we want to have the maximum amount of data
points forming the profiles of the beat bands because then the fit of a model function
to a band will be more reliable. The Spectrum Analyzer provides 1000 data points
along the span of frequencies displayed. The value of the span can also be changed
manually. To obtain more data points forming the profile of the bands we can set
the maximum value of the resolution bandwidth (RBW) which is 1 MHz because
then, as we discussed previously, the width of the bands increases and more points are
employed in forming the profile of the bands. On the other hand, we can reduce the
span of frequencies to a situation where only 5 or 7 bands are displayed because this
number of bands is enough to obtain the value of the modulation index from the fit.
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By reducing the span we also obtain more of the data points conforming the profile
of the bands as it is shown in Figure 3.3.

(a) span: 180 MHz

(b) span: 50 MHz

Figure 3.3: Data points of the spectrum of beat bands measured with the Spectrum
Analyzer for a modulation frequency of 10 MHz and an input voltage in
the EOM of 3 V (Vpp) using (a) 180 MHz span (b) 50 MHz span. In
both cases the RBW is 1 MHz. Reducing the span we lose information
about higher-order sidebands but in exchange the bands are defined by
more data points.
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3.1.3 Data treatment and results of the characterization of the relation
modulation index versus applied voltage to the EOM

The setup presented in Figure 3.2 allows us to measure an spectrum of beat bands
centered at 150 MHz. The Spectrum Analyzer displays the power of each beat band
versus its frequency. This power is electrical power, so it is related to the beat bands’
amplitude ibeat ∝ |Jk(β)| by Pbeat = i2beatR, being R the internal resistance of the
Spectrum Analyzer. Hence, the relative magnitude of the beat bands displayed by
the Spectrum Analyzer is determined by J2

k (β) which is the same characteristic of
the power of the bands from a phase-modulated signal that we described in Section
2.6.1. We make use of this feature of the bands to extract the value of β from the
beat spectrum. To do so, we construct a model of peak profiles (e.g. Gaussian or
Lorentzian profiles) that imitate the different bands and fit this model to the data
points measured with the Spectrum Analyzer. Therefore, in this model, for a certain
modulation frequency fm the functions are centered at the beat frequencies 150 MHz,
150 MHz ± fm, 150 MHz ± 3fm,..., and the peak value of this model functions is
proportional J2

k (β) (for more details of the fit visit Appendix 5.1). After testing two
different models, one where the bands are represented by Lorentzian functions and
other where they are represented by Gaussian functions, we conclude that the model
that best fits to the profile of the bands is the Gaussian model, as it can be seen in
Figure 3.4, even though the values of the modulation index provided by both models
are almost always the same. Another reason to choose the Gaussian model is that
the error of the modulation index obtained is slightly smaller.

To characterize the relation modulation index versus applied voltage to the EOM for
a given modulation frequency, we set in the function generator that controls the EOM
a sinusoidal signal output with this modulation frequency and different values of the
peak-to-peak voltage Vpp, which is related to the amplitude of the sinusoidal signal V0

that appears in the expression (3.5) by Vpp=2V0. For each values of Vpp we measure
the spectrum of beat bands using the Spectrum Analyzer and then fit the Gaussian
model to the data of the spectrum. As we explained before, to fit the Gaussian
model to the spectrum of bands we reduce the span of frequencies displayed by the
Spectrum Analyzer to a situation where they are measured only 5-7 bands in order
to obtain more data points forming the profile of the bands. For this reason, we focus
on measuring the spectrum when only the first two or three pairs of sidebands have
a relevant amplitude, which corresponds to modulation indices β < 2. Proceeding
like this, we obtain a set of points modulation index vs. voltage, that exhibit a linear
behaviour as it is shown in Figure 3.5. With around 40 data points, we can fit a linear
model, which is predicted by expression (3.5). In terms of the peak-to-peak voltage,
the linear relation is

β =
π

2Vπ
V pp (3.10)

From the slope of this linear fit we extract the value of the parameter π
2Vπ

that char-
acterizes the relation β vs Vpp, and hence allows us to control the value of β for
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any applied Vpp to the EOM. Repeating the same procedure for different modulation
frequencies we obtain slightly different dependencies, shown in Figure 3.6. We choose
modulation frequencies around 10 MHz since it is an adequate value for generating an
error signal in the Frequency Modulation Saturated Absorption Spectroscopy method.

(a) Model with Lorentzian functions. β=1.483 ± 0.003

(b) Model with Gaussian functions. β=1.483 ± 0.005

Figure 3.4: Data points (orange) of the spectrum of beat bands measured with the
Spectrum Analyzer at 1 MHz RBW and 50 MHz span for a modulation
frequency of 10 MHz and an input voltage in the EOM of 1.505 V (Vpp).
In blue there are presented two different models for the fit to the beat
bands (a) Model of Lorentzian beat bands. (b) Model of Gaussian beat
bands. The value of the modulation index obtained is the same in both
cases but the error is slightly bigger for the Lorentzian model (relative
error of 0.3% versus 0.5%).
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(a) Vpp = 0 V
β = 0.08 ± 0.05

(b) Vpp = 0.992 V
β = 0.977 ± 0.003

(c) Vpp = 1.315 V
β = 1.299 ± 0.003

(d) Vpp = 1.590 V
β = 1.582 ± 0.003

(e) Vpp = 1.780 V
β = 1.767 ± 0.004

(f) Vpp = 2.470 V
β = 2.418 ± 0.005

Figure 3.5: Plot of the model of Gaussian profiles (blue line) fitted to the data points
(orange dots) measured with the Spectrum Analyzer for a fixed fm =
10 MHz, and different peak-to-peak voltages Vpp applied to the EOM,
presented with the resulting value of β from the fit. The settings of the
Spectrum Analyzer are RBW: 1MHz, VBW: 10 kHz, SWT: 10 s and Span:
50 MHz
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(a) fm=5 MHz, slope: π
2Vπ

= 0.982 ± 0.001 V−1

(b) fm=10 MHz, slope: π
2Vπ

= 0.9812 ± 0.0016 V−1

(c) fm=15 MHz, slope: π
2Vπ

= 1.000 ± 0.007 V−1

Figure 3.6: Plot of the data points (orange) of the dependency β vs. Vpp for different
fm and linear fit (blue) applied to this data. The slope of the linear fit is
identified with the parameter π

2Vπ
that characterizes the relation modula-

tion index vs. applied voltage to the EOM.
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Figure 3.6 shows that the relation between the modulation index and the applied
voltage to the EOM is linear, as expected from the theoretical expression 3.5. This
expression also predicts that the modulation index is zero for no applied voltage since
there should be no modulation of the light when the EOM is not working. However,
we can see in the graphs presented in Figure 3.6 that the values of the modulation
index obtained from the fitted model do not tend to zero at small peak-to-peak
voltages and therefore the points deviate from the linear behaviour. Even for 0 Vpp
we obtain a non-zero modulation index, as we can see in Figure 3.5a. Furthermore,
for these low voltages the error of the modulation index provided by the fitted model
is also bigger as it can seen in the error bars of the graphs. This can be explained from
the fact that the peak values of the Gaussian functions of the model are given by J2

k (β)
and for β → 0 J0(β) ≈ 1 and Jk(β) ≈ 0 for k ̸= 0. Therefore, the noise floor from the
spectrum displayed by the Spectrum Analyzer is interpreted by the fit as a non-zero
amplitude of the sidebands, which leads to an also non-zero value of the modulation
index. This occurs until the amplitude of the sidebands can be distinguished from
the noise. We can also see in the graphs that there seem to be different linear regions.
This is more noticeable in the graph 3.12c, where at 2 Vpp there is some sort of
’break’ and after that threshold the slope of the linear dependency appears to be
different. The reason behind is that there is a difference between the Vpp that we
select manually in the function generator and the one that the device really displays.
For instance, a selected value of 2 Vpp corresponds to ∼1.88 Vpp when we measure it
(e.g. using an oscilloscope) while a selected 2.1 Vpp corresponds to a measured value
of ∼2.15 Vpp. To solve this problem we measure the output Vpp voltage for every
selected value in the function generator. However, the difference is still patent at
different regions of voltage. We also must take into account that the fits are worse as
we increase the modulation frequency, since that means that the span of the Spectrum
Analyzer must be increased and therefore less data points form the profile of the bands.

We can now compare the value of the parameter β
V pp = π

2Vπ
obtained from the linear

fits 3.6 to the estimation provided by the supplier company iXblue:

fm (MHz) π
2Vπ fit

(V−1) π
2Vπ pred.

(V−1) Discrepancy Relative discrepancy

5 0.982 ± 0.001 1.006 0.024 2%

10 0.9812 ± 0.0016 0.993 0.0118 1%

15 1.000 ± 0.007 0.979 0.021 2%

Table 3.1: Comparison of the parameter π
2Vπ pred.

predicted by the relation given by the

commercial supplier as a guideline with the slope of the linear fits presented
at Figure 3.6 π

2Vπ fit
.

As we can see in Table 3.1 the dependencies of the modulation index with the applied
peak-to-peak voltage at the different modulation frequencies provided by the supplier
are similar to the ones that we obtained from the fits, with a relative discrepancy
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∼ 2%, calculated as
∣∣fit value - predicted value

∣∣/predicted value. However, the
absolute discrepancies, calculated as

∣∣fit value - predicted value
∣∣ is not covered by

the errors obtained from the linear fits. In fact, this error does not take into account
systematic errors like the one we described regarding the voltage displayed by the
function generator, which we can still notice in the graphs even after measuring
the output peak-to-peak voltages. Other sources of error to be taken into account
are possible systematic errors from the Spectrum Analyzer or the electronics. For
example, in the fits of the Gaussian model presented in Figure 3.5, we can see that the
sidebands of higher frequency than the carrier band have a visibly smaller magnitude
than the sidebands with lower frequency than the carrier band. This can be due to a
residual Amplitude Modulation at the modulation frequencies or due to some depen-
dency of the electronics (e.g the amplifier) with the frequency. On the other hand, as
we said before the predicted values are extrapolated from a measurement at fm=50
kHz, while we use modulation frequencies three orders of magnitude bigger. For this
reason we only use them as a reference to test the reliability of the experimental values.

To sum up, using this method we characterized the relation between modulation index
β versus applied voltage to the EOM for different modulation frequencies fm, which
allows us to have control of the deviation frequency ∆f = βfm of the equivalent
Frequency Modulation of the light field produced by the EOM, and we are now able
to investigate now the dependency of the SNR with the deviation frequency.

3.2 Investigation of the SNR dependency with the deviation
frequency

With the characterization of the relation modulation index vs. applied voltage to
the EOM presented in Section 2.1 we can control the deviation frequencies of the
Frequency Modulation of the light field produced by the EOM. In Section 2.6 we
presented the Frequency Modulation Saturated Absorption Spectroscopy method to
generate an error signal with a transition frequency of Rb as frequency reference. At
the same time, we also saw that the slope of the error signal, which is a measure of the
signal-to-noise ratio is proportional to the deviation frequency. Therefore, we want to
make use of the results obtained in Section 3.1.3 to investigate the dependency of the
slope of the error signal with the deviation frequency. The interest behind is that a
better laser frequency stabilization can be achieved with a higher signal-to-noise ratio.
To do such an investigation, we need to generate and measure the error signal using the
Frequency Modulation Saturated Absorption Spectroscopy method. In this Section
we describe the setup that we used to put into practice this method and indicate
which parts of this setup are integrated in the compact module. Finally, we present
and discuss the results of the investigation of the dependency of the SNR with the
deviation frequency for different combinations of modulation indices and modulation
frequencies.
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3.2.1 Setup for Saturated Absorption Spectroscopy

We perform Saturated Absorption Spectroscopy as part of the Frequency Modulation
Saturated Absorption Spectroscopy method that we use to generate an error signal
with a transition frequency of Rb as frequency reference. In Section 2.5 we described
the working principle of this method, that requires two counterpropagating and
overlapping laser beams at the same frequency that travel through an atomic gas
–in this case Rubidium–. Measuring the intensity of one of the beams (probe beam)
through the Rubidium sample we obtain the SAS signal IT (ν) that presents resonant
peaks when the frequency of the laser ν is tuned to one of the transition frequencies
of Rubidium (see Figure 2.7).

The setup that we use to perform SAS is integrated into the compact module, as it
can be seen in Figure 3.7b, and it includes waveplates or retarders, which are birefrin-
gent crystals capable to alter the polarization of the light that travels through them
depending on the length and orientation of the crystal. Specifically we use a mounted
Zero-Order Quarter-Wave Plate and a mounted Zero-Order Half-Wave Plate. We also
use a 10 mm Polarizing Beam Splitter Cube PBS122 with wavelength range of 620-
1000 nm provided by Thorlabs. This optical device transmits light with polarization
aligned to its transmission axis and reflects light with polarization perpendicular to
this axis. We also use a 12.7 mm diameter BK7 flat mirror provided by EKSMA
Optics and mounted in a HVM-05i mirror mount provided by Newport. We also
use a SM05PD1A reverse biased photodiode provided by Thorlabs that works with a
recommended circuit provided by the manufacturer at a bias voltage of 5 V. All the
optical elements are supported by mounts that leave them at the same height as the
incoming beam, which is coupled into the SAS setup using a fiber coupler fixed with
screws to one side of the module. At the same time all the mounts are screwed to the
floor of the compact module using M4-screws to guarantee the maximum stability.
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(a)

Mirror λ/4 Vapor cell λ/2PBS

PD

(b)
Figure 3.7: Scheme of the setup used to perform Saturated Absorption Spectroscopy

and implementation in the compact module. The polarization of the in-
cident pump beam is aligned to the transmission axis of the Polarizing
Beam Splitter (PBS) using a half-wave plate (λ/2) and excites the atoms
in the vapor cell. The beam is normally reflected in the mirror and acts as
the probe beam (pump beam and probe beam are represented separated
but they must overlap in order to interact with the same atoms). The
quarter-wave plate (λ/4) is used to align the polarization of the probe
beam with the reflection axis of the PBS, so it can be reflected in the PBS
and measured by the photodiode (PD).

The incoming linearly polarized laser beam passes through a half-wave plate, which
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can rotate the linear polarization of the light by a certain angle depending on the
relative orientation of the crystal and the incident polarization. The half-wave plate is
used to align the polarization of the light with the transmission axis of the polarizing
beam splitter (PBS). The alignment is evaluated by placing a powermeter after the
PBS in the direction of the incoming beam (transmitted beam through the PBS)
because the PBS transmits only the component of the polarization light aligned with
its transmission axis and therefore the transmission will be maximum when both
are aligned. The rotation of the polarization is performed by physically rotating the
half-wave plate around the optical axis using the mount of the waveplate

After being transmitted through the PBS, the light beam, that acts as the pump
beam, travels through the vapor cell containing the Rb atoms. Then, the beam
passes through a quarter-wave plate and is reflected by the mirror. The power of
the reflected beam is reduced compared to the pump beam due to the absorption
from the Rb atoms in the vapor cell and now acts as a probe beam when it travels
again through the vapor cell containing the Rb atoms. To make sure that the two
beams overlap (necessary for the SAS method) we use the mount of the mirror that
comes with driver adjusting screws which allow us to control the inclination of the
mirror in the vertical and the horizontal direction. To make sure that the beam is
normally reflected we use a small screen placed at some distance from the mirror
in the direction of the reflected beam and then use the driver screws to adjust the
direction until it overlaps with the incident beam.

The beam passes two times in total through the quarter-wave plate: one before
being reflected and one after being reflected. The effect on the polarization of the
light when the beam travels two times through a quarter-wave plate with the same
orientation is equivalent to the effect produced by a half-wave plate. Therefore,
function of this waveplate is also to rotate the polarization of the light to align
it, this time, with the reflection axis of the PBS so it can be directed to the
photodiode. To do so, we again evaluate the alignment of the light and the reflection
axis of the PBS by placing the powermeter in the direction of the beam reflected
by the PBS and rotating the quarter-wave plate until the power measured is maximum.

The intensity of the probe beam is measured by the photodetector and as the frequency
of the laser is varied, the resonant peaks at the transition and crossover frequencies
appear (see Figure 2.7).

3.2.2 Setup to generate and measure the error signal

The ultimate goal of the compact module that we build is that it is able to generate
an error signal with one of the transition frequencies of Rb as frequency reference.
To do so, according to the Frequency Modulation Saturated Absorption Spectroscopy
method we need to incorporate to the SAS setup previously described, the EOM
used to produce the Frequency Modulation of the laser light field that goes into the
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SAS stage and the electronic elements (mixer and low-pass filter) described in Section
2.6.2 to demodulate the AC error signal measured in this stage and hence obtain the
DC error signal predicted by the expression (2.29). These electronic elements are
integrated to the compact module, as shown in Figure 3.9, in addition to another
element: the Bias Tee (BT). This is an electronic device capable of separating AC
current from DC current. We use this device so we can obtain simultaneously two
outputs from the compact module: one with the error signal and other with the SAS
signal, which is useful to identify which error signal corresponds to which resonance
frequency of the SAS signal. The setup 3.8 allows us to measure the generated error
signal in an oscilloscope and it is also used in the investigation of the dependency of
the SNR with the deviation frequency.

Figure 3.8: Scheme of the experimental setup used to measure in an oscilloscope
the error signal and the SAS signal. The beam from the frequency-
tunable DFB diode laser is modulated by the voltage-controlled EOM.
Then the frequency-modulated beam is used to generate a FM SAS signal
when passes through the SAS stage. This signal is amplified by the tran-
simpedance amplifier (TIP) and then the Bias Tee separates the DC part,
that corresponds to the SAS signal at the carrier frequency and the AC
part whch contains the error signal. The error signal is demodulated using
the mixer and the low-pass filter to obtain a DC error signal. Both the
SAS signal and the error signal are then measured in different channels of
the Oscilloscope.

The laser source that we use the Frequency Modulation Saturated Absorption
Spectroscopy method is again the DFB diode laser which a frequency-tunabe laser
in the wavelength range 767-780 nm. The optical power of the output laser beam
is 1.75 mW. The frequency of the laser is controlled using a function generator,
which allows us to span over time the transition frequencies of the D2 line of 85Rb
and 87Rb with the laser frequency. The light field from the DFB laser source is
modulated by the NIR-MPX800-LN-0.1 Electro-Optic Modulator from the company
iXblue which we characterized in Section 3.1.3 and is voltage-controlled by another
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function generator that creates a sinusoidal signal. With the function generator we
set the modulation frequency fm and the peak-to-peak voltage, which corresponds to
a modulation index β according to the characterization presented in Section 3.1.3.
Therefore we set a known deviation frequency ∆f = fmβ. The frequency-modulated
beam then is used to perform SAS spectroscopy using the setup previously described
in Section 3.2.1. The photocurrent measured in the SAS stage is amplified using
the transimpedance amplifier (TIP). According to expression 2.23, this signal has an
DC term that corresponds to the unmodulated SAS signal at the carrier frequency

IT (ωc), and an AC term dIT
dω

∣∣∣
ωc

cosΩt that is proportional to the error signal. Both

terms are separated using a ZX85-12G-S+ Bias Tee. The DC term is directly
measured by the Oscilloscope, providing the SAS signal described in Section 2.5. The
AC signal is amplified using a ZFL-500+ Amplifier and is fed to a ZLW-3+ Mixer
together with a sinusoidal signal from the same function generator that controls
the EOM. Then this signal is filtered using an SLP-1.9+ Low-Pass Filter and pro-
viding th DC error signal that is also measured in another channel of the Oscilloscope.

The electronic components Bias Tee, Amplifier, Low-Pass Filter and Mixer, manufac-
tured by Mini-Circuits, are incorporated in a compact way to the discriminant module
and fixed to the walls of the module by screws and connected using SMA cables, as it
is shown in Figure 3.9.

BTAmp,LPFMixer

Figure 3.9: Picture of the electronic components ZX85-12G-S+ Bias Tee (BT), ZFL-
500+ Amplifier (Amp.), SLP-1.9+ Low-Pass Filter (LPF) and ZLW-3+
Mixer integrated in the compact module.

3.2.3 Results of the investigation and discussion

As we stated in section 3.1, a better frequency stabilization can be achieved if the
frequency deviations are measured with a high signal-to-noise ratio (SNR). This
means that the discriminant provides large electric signals when there are small
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frequency deviations of the laser frequency to stabilized from the reference frequency.
we also related the SNR to the slope of the error signal (V/Hz) provided by the
discriminant. According to Section ??, the generated error signal in the FM SAS
method is the derivative of a resonance of the SAS signal (approximately Lorentzian),
that presents a linear regime near the resonant frequency. The slope of this linear
regime (and hence the SNR), according to relation (2.26), is proportional to the
amplitude of the error signal and at the same time the amplitude is proportional
to the deviation frequency according to the expression (2.29). Therefore, bigger
frequency deviations of the instantaneous laser frequency from its carrier frequency
can lead to a higher signal-to-noise ratio. The aim of this Section is to investigate
this dependency and determine the limits of this way of increasing the SNR.

To do this investigation we make use of the setup presented in Figure 2.10 that allows
us to measure the error signal and the SAS signal in two different channels of the
oscilloscope. We choose to investigate the crossover frequency of the 87Rb D2 line
Fg=2, shown in Figure ??. Instead of measuring directly how the slope varies with
the deviation frequency we equivalently measure how the voltage difference between
the maximum and minimum values of the error signal ∆V changes with the deviation
frequency. To see this equivalency, we can consider the error signal ϵ in terms of the
derivative of the Lorentzian resonance presented in Section ??.

ϵ(ω) =
1

2
∆ω

dL

dω
=

−2I0(ω − ω0)/(Γ/2)
2[

1 +
(
ω−ω0
Γ/2

)2]2 (3.11)

being ∆ω the deviation frequency, I0 the amplitude of the Lorentzian, ω0 the resonance
frequency and Γ the FWHM of the Lorentzian. The position of the maximum and

minimum values of the derivative are ω± = ω0 ±
√
3
6 Γ and the quantity ∆V that we

measure from the error signal in the Oscilloscope, in terms of the parameters of the
Lorentzian is

∆V =
1

2
∆ω

[
]
dL

dω

∣∣∣
ω−

− dL

dω

∣∣∣
ω+

]
(3.12)

which is proportional to the deviation frequency ∆ω as well as the slope (see expression

(2.26)), while the quantity dL
dω

∣∣∣
ω−

− dL
dω

∣∣∣
ω+

only depends on the parameters of the

Lorentzian (width center frequency etc.) and does not vary with the modulation
frequency nor the frequency. The advantage of measuring this quantity is that it is
extracted very easily using the markers tool of the Oscilloscope.
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87Rb
Fg=2

85Rb
Fg=3

(a)

ΔV

(b)

Figure 3.10: (a) Screenshot of the Oscilloscope with the SAS signal displayed in one
channel (yellow) and the error signal in other (purple). The error signal
chosen for the investigation is pointed with a red arrow and corresponds
to a crossover frequency of the D2 line of 87Rb, as it can be seen from the
comparision of the SAS signal with the one presented in Fgure 2.7. (b)
Representation of the ∆V parameter measured with the Oscilloscope.

To investigate the dependency of the ∆V parameter with the deviation frequency we
choose one of the modulation frequencies for which we characterized the modulation
index in Section 3.1.3. For this modulation frequency we vary the value of the modula-
tion index by selecting different peak-to-peak voltages from 0 V to 3 V in the function
generator that controls the EOM. The deviation frequency is given by ∆f = fmβ.
For every selected voltage and modulation frequency we measure the value ∆V of the
error signal, providing a set of points ∆V versus ∆f which are presented in Figure
3.12. The investigation of the dependency for a fixed fm = 15 MHz presented at
Figure 3.12c is perhaps the most relevant result, since we can see that there is a linear
region like the one we described in the expression (3.12) but at a deviation frequency
of ∆f ∼15 MHz the dependency starts to non-linear and the parameter ∆V starts
to saturate. Visually, the error signal displayed by the Oscilloscope starts to show
some asymmetry (see Figure 3.11) and therefore stops looking like the derivative of
the resonance that we described in Section ??. This region of deviation frequencies is
not explained by the theoretical model that we described. The reason of this could be
that the condition that the condition of ∆f small compared to the linewidth of the
resonance that we used to derive the expression of the error signal as the derivative
of the resonant signal is no longer fulfilled. The natural linewidth of the Rb D2 line
transitions is ∼6 MHz[?], but they must be added other possible sources of broadening
such as pressure broadening and broadening derived from the SAS method (e.g the
width of the SAS signal might increase with a bigger intensity of the pump beam).
Therefore it seems reasonable to think that a deviation frequency of ∼15 MHz is the
limit of what we can consider small compared to the linewidth of the resonance in this
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case. For bigger deviation frequencies, even though the parameter ∆V of the error
signal keeps increasing, we can no longer relate it to the slope of the error signal since
the signal does not resemble the derivative of the Lorentzian anymore. The results for
fixed values of fm at 5 and 10 MHz presented in Figures 3.12a and 3.12b are similar
to those obtained for a fixed fm at 15 MHz with the difference that since the value of
fm is smaller, the values of ∆f = fmβ reached when we vary the modulation index
from 0 to 3 are also smaller. Thereby, with fm = 5 MHz we only reach a deviation
frequency of ∼15 MHz and therefore we only see the linear behaviour of the ∆V pa-
rameter with the deviation frequency, while for a fixed fm at 10 MHz and values of
the modulation index from 0 to 3 we reach a deviation frequency of ∼30 MHz and
therefore we get to see how the ∆V parameter from ∆f ∼15 MHz onwards starts to
saturate and deviates from the linear behaviour. In the linear regions of the three
graphs, the rate at which the ∆V parameter increases with the deviation frequency is
∼2 V/MHz, being slightly bigger for a fixed fm at 5 MHz, but this could be because
the linear region is not spanned in its totality. In this graphs we can again see a break
at a deviation frequency of ∆f ∼20 MHz for the graph of fixed fm = 5 MHz and at
∆f ∼30 MHz for the graph of fixed fm = 15 MHz. This break corresponds again
to the systematic error of the function generator that controls the EOM, providing
values of the peak-to-peak voltage that do not correspond to the ones selected.

(a) fm=10 MHz β = 1.5 (b) fm=10 MHz β = 6

Figure 3.11: Comparison of two error signals with fm=10 MHz and two different values
of β (a) β = 1.5 (b) β = 6. For β=6 the error signal shows asymmetry
and does not resemble the derivative of a Lorentzian, having a maximum
value bigger than the minimum value.
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(a) fixed fm=5 MHz, slope in the linear
regime: (2.22 ± 0.01)V/MHz

(b) fixed fm=10 MHz, slope in the linear
regime: (2.07 ± 0.01)V/MHz

(c) fixed fm=15 MHz, slope in the linear
regime: (2.07 ± 0.01)V/MHz

Figure 3.12: Dependency of the difference between the maximum and minimum values
of the error signal with the deviation frequency ∆f = fmβ. (a) Corre-
sponds to a fixed fm = 5 (b) Corresponds to a fixed fm = 10 MHz (c)
Corresponds to a fixed fm = 15 MHz. The modulation index is varied
for each fixed frequency providing different values of the deviation fre-
quency. They are also presented linear fits (blue) at the regions where
exists a linear behaviour predicted by the expression (3.12). The linear
fits are realized using (a) all the data points (b) the first 20 points (c)
the first 8 points. The slopes of the fits are presented together with their
corresponding graph.
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The conclusion that we extract from this investigation is that as predicted with the
theoretical model (3.12) there is indeed a linear dependency of the ∆V parameter –and
hence the SNR– with the deviation frequency that we apply to frequency-modulated
laser but this relation is limited to a certain region of deviation frequencies that might
depend on the conditions of the experiment. For example a different laser power
we might have obtained a different width for the resonances of the SAS signal and
therefore the linear region could be different. On the other hand, we cannot affirm that
using different combinations of modulation index and modulation frequency will lead
to different linear relations, since even though we obtained a slightly better relation
for a fixed fm at 5 MHz, to do such an affirmation would have required to span the
same region of deviations frequencies and with the same amount of points.
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4 Summary and outlook

To summarize, in this thesis we were able to describe the construction of a compact
discriminant module that can generate an error signal with one of the transition
frequencies of Rubidium as frequency reference, putting into practice the technique
of Frequency Modulation Saturated Absorption Spectroscopy described along Section
2. At the same time, we were able to characterize the dependency of the modulation
index with the applied peak-to-peak voltage to the EOM at different modulation
frequencies, which allows us to have control of he values of the deviation frequency
applied to the light field at these modulation frequencies. Furthermore, we confirmed
the validity of these results by comparing them with the theoretical estimations
provided by the supplier company of the EOM iXblue and we also porposed possible
sources of errors that would explain the small discrepancies between these results.
Finally, thanks to this characterization we were able to study the dependency of
the dependency of the signal-to-noise ratio of the signal generated by the compact
discriminant module with the deviation frequency. In this investigation we could
confirm the existence of a linear dependency region of the signal-to-noise ratio with
the deviation frequency predicted by the Frequency Modulation Saturated Absorption
Spectroscopy method. We also provided –for the experimental conditions described
in Section 3.2.2– an approximated value of the deviation frequency that determines
the end of this linear behaviour at ∆f ∼15 MHz. Finally, we also provided a possible
explanation for this value related to the FM SAS method to generate an error signal
as the derivative of a resonance, which was derived with the assumption of that the
deviation frequency has to be small compared to the linewidth of the resonance which
would also explain why the error signal starts to deform for values of the deviation
frequency bigger than ∼15 MHz.

Further steps in the investigation of the dependency of the signal-to-noise ration with
the deviation frequency could be to measure the linewidth of the resonance from which
we generate the error signal because then we would be able to compare this value to
the maximum deviation frequency value of the linear region. Another possible path
in the investigation of how to improve the SNR of the error signal could be to test
different powers of the laser light used in the FM SAS method and compare the slope
of the different error signals at each power in order to find an optimal power. To
conclude, one could also test the performance of the discriminant module in an Active
Frequency Stabilization feedback-loop adding a Loop Filter (e.g. a PID controller)
that stabilizes the tunable laser making use of the error signal provided by the compact
discriminant that we constructed.
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5 Appendix

5.1 Gaussian model of the bands of the spectrum of a
phase-modulated signal

The fits of the Gaussian model of bands to the data of the spectrum of beat
bands measured with the Spectrum Analyzer were performed using the function
NonLinearModelFit of Wolfram Mathematica:

NonlinearModelFit[fitdata,

{
A

2∑
k=−2

Jk(m)2 exp

(
−
(
f − f0− 107k

)2
2Γ2

)
,m > 0

}
,{

m,A,
{
Γ, 4 105

}
,
{
f0, 1.5 ∗ 108

}}
, f ]

fitdata is a list with the data points power vs. frequency extracted from the Spectrum
Analyzer, which can be imported directly from the .CSV file that contains the data
using the function Import. The next element is the model to be fitted to the data. A
is a generic amplitude for the bands, which are represented by the Gaussian functions

AJk(m)2 exp

(
−(f−f0−107k)

2

2Γ2

)
, where m is the modulation index, f is the frequency

and f0 the central frequency of the spectrum (∼150 MHz) and Γ the width of the
Gaussian functions. As we can see from the sum , that goes from -2 to 2, in this
example there are only being fitted two pairs of sidebands. This is because the span
chosen in the Spectrum Analyzer only permitted to measure the first two pairs of
sidebands. In this case the modulation frequency is 10 MHz, this can be seen from
the center frequency of the different Gaussian functions, that are f0, f0 ± 107, f0 ±
2*10. The amplitude of each Gaussian function is proportional to Jk(m)2. This is
the key term that provides the value of the modulation index m from the fit since to
fit the Gaussian functions to the measured spectrum requires to find the value of m
that provides the best fit for all the Guassian function as a whole. Here we also set
the condition m > 0 since we don’t get negative vlues of the modulation index by
increasing the voltage of the EOM from 0 Vpp. The next terms grouped in a bracket
after the model are the parameters to be fit. These are: the modulation index m, the
general amplitude factor A, the width of the Gaussian functions which we set to be
close to 0.4 MHz because it provides better fits {Γ, 4 105}, the center frequency of the
Spectrum, which set to be close to 150 MHz {f0, 1.498108} and finally the frequency
f which is the variable of the Gaussian model.
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