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ABSTRACT

This thesis presents the assembly and characterization of a long-working distance ob-
jective which consists of five low-cost commercial singlet lenses. This self-assembled
objective has a high numerical aperture of NA=0.53 and typical working distance of
31.85 mm making it suitable for Quantum gas experiments. The objective is designed
to have diffraction limited performance at the optical trapping wavelength of 1064
nm, which corresponds to a theoretical spatial resolution of 1.45 µm. However, the
objective can easily be adapted to optimize performance at shorter or longer wave-
lengths if needed. In this thesis, performance is evaluated at the design wavelength
of 1064 nm to test agreement with simulations. These include measuring the focal
spot size and the spatial resolution using a USAF1951 test target. After testing and
evaluation, the objective will be installed in the Dipolar Quantum gases experiment
for trapping and manipulating Dysprosium atoms.
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1. Introduction

Optical trapping of neutral atoms is achieved by using an objective to focus down a
laser beam and thereby, create a tight confinement for the atoms at the focus. This
technique is referred as optical tweezers and it has ,thanks to Arthur Ashkin and his
colleagues, become a powerful tool in diverse fields, allowing for the manipulation and
study of microscopic objects like atoms, nanoparticles, human cells and viruses. Opti-
cal tweezers have provided researchers a unique tool to explore fundamental questions
about the nature of atoms and their interaction with light under different conditions
[4].

The QOQI (Experimental Quantum Optics And Quantum Information) research
group at the Johannes Gutenberg University is part of the QuCoLiMa (Quantum
Cooperativity in Light and Matter) collaborative research center, and focuses on us-
ing cold, neutral atoms for quantum optical and quantum information science. One
of their projects, deals with light propagation in dipolar media. In this project, we
aim to study the interplay between light-induced and magnetic dipole-dipole interac-
tions on the propagation of light and investigate their impact on cooperative effects
like sub- or superradiance. Dysprosium (Dy), a rare-earth lanthanide element, is a
suitable candidate for studying these effects given that it has the highest ground state
magnetic moment of any element in the periodic table (u = 10 Bohr magneton). To
this end, we want to create dense and ultracold ensembles of neutral Dysprosium in
an Optical Dipole Trap (ODT). The ODT will be generated by focussing down a high
power 1064 nm laser beam onto a sample of Dy atoms in a Magneto-Optical Trap
(MOT) [9].

The aim of this thesis is to assemble and characterize a high Numerical Aperture (NA)
objective, which will be used to create a tight ODT. Understandably, the density of
atoms in the ODT depends strongly on the size of the focal region and therefore, the
objective has been designed to offer diffraction limited performance and generate the
smallest focal spot size possible. The lenses are assembled inside commercial 2′′ lens
tubes from Thorlabs. Notably, the performance of the objective strongly depends on
the spacing between the individual lenses and therefore, spacer rings are designed and
manufactured in the workshop to separate the lenses with high precision.

The performance of the objective is characterized by measuring the profile of the
focal region using knife-edge measurement and estimating the spatial resolution using
a USAF 1951 resolution test chart. All measurements are performed at the design
wavelength of 1064 nm which will be used to create the ODT. Finally, we compare
how the results of these measurements compare to simulations and what could be the
possible sources of any discrepancies and deviations.
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2. Theory

This section will focus on several fundamental concepts in optics, such as numerical
aperture, optical aberrations, mathematical treatment of laser beams, and Gaussian
beams. These concepts will be useful in discussing the contents of this thesis further
on. The information presented here is drawn from two authoritative sources: Optical
Tweezers by Philip H. Jones and Microrheology with Optical Tweezers by Manlio
Tassieri. Additionally, all figures used in this section have been created using the
software tool Inkscape [7].

2.1. Numerical aperture

The range of angles over which an optical system or a lens, can collect or emit light
is characterized by Numerical aperture.It is defined as the product of the refraction
index n of the medium, in which the lens is immersed, and the sine of the angle
θ between the optical axis and the furthest light refraction from the center of the
lens, based on geometrical considerations. NA is the result of Abbe’s sine condition,
required for lenses and optical systems to produce sharp images of off-axis as well as
on-axis objects.

NA = n · sin θ (2.1)

Concisely, larger the angle θ, the greater the amount of light captured by the lens, and
consequently higher the numerical aperture.It can be shown that an optical system
with a higher NA can, in principle, produce higher resolution images. That is to say,
NA determines the reoslving power of an optical system. NA is the most convenient
way to describe the lens aperture since it is directly proportional to the light gathering
ability of an optical system. For more complex optical systems that deviate signifi-
cantly from paraxial conditions, more advanced models are being used to determine
the numerical aperture. These models are not going to be discussed in this thesis,
since all optical systems used in this thesis fulfill Abbe’s sine condition.

2.2. Optical aberrations

Optical aberrations refer to the imperfections or any deviations from the ideal ”diffrac-
tionlimited” imaging performance of the system.

The aim of imaging, in the ideal case, through an aptical system can be defined as
follows: the system must capture all light radiating in every direction from a given
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2. Theory

point on the object and converge it to the optimal image point [2]. This would also
require the beam of light originating from the object point to traverse the lens at
any angle and ultimately reach the corresponding image point. Nevertheless, various
types of optical aberrations can arise in this process, such as chromatic aberration,
spherical aberration, tilt, field distortion, coma, and astigmatism. This thesis will
focus primarily on three types of optical aberrations: chromatic aberration, spherical
aberration, and coma. These aberrations are discussed due to their significant impact
they have on image quality and their prevalence in real-world optical systems [1].

2.2.1. Chromatic aberration

Chromatic aberration occurs when a lens or an optical system refracts different wave-
lengths of light differently. Chromatic aberrations are divided into two subtypes: axial
and lateral color, also referred as longitudinal and transverse, respectively. Both types
of chromatic aberrations can be particularly noticeable in lenses with a large aperture
or high magnification, and can significantly impact the overall image quality. Axial
chromatic aberration is caused by the difference in focal length of the lens for different
wavelengths of light along the optical axis. Whereas, lateral chromatic aberration is
the result of different wavelengths of light refracted by a lens at different angle, causing
them to be displaced laterally from each other in the final image.

[a] [b]

Fig. 2.1: Comparison of [a] axial and [b] lateral chromatic aberration.

The focal length for a thin lens with axial chromatic aberration is given by:

1

fi
= (ni − 1)

Ri2 −Ri1

Ri2 ·Ri1
, (2.2)

where ni is the refractive index, Ri1 and Ri2 the curvature radii of the front and back
surfaces of the i-th lens. It is important to note that the refractive index, n(λ), of
a lens material is dependent on the wavelength, λ, of the light passing through it.
Consequently, the focal length of the lens also changes with the wavelength of the
light [8].

This Lens maker’s formula is a mathematical expression that takes in physical pa-
rameters, such as the radius of curvature and refractive index of a lens surface, to
determine its focal length. This formula can effectively calculate the focal length of a
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2. Theory

lens that suffers from axial chromatic aberration. However, lateral chromatic aberra-
tion is not depended on these physical parameters but rather on the angle of incidence
and magnification of the lens. Thus, it’s important to note that the ”Lens maker’s
formula” cannot be applied to calculate lateral chromatic aberration.

2.2.2. Spherical aberration

Spherical aberrations occur when light rays passing through a lens are refracted differ-
ently depending on their distance from the center of the lens. This results in light rays
that strike the lens near the edge being deflected differently than those that strike the
lens nearer to the center. Similar to chromatic aberration, spherical aberration can
also be categorized into two subtypes: axial and lateral. Spherical aberrations can be
classified as either positive or negative. A positive spherical aberration occurs when
peripheral rays are bent to much, and a negative spherical aberration occurs when
peripheral rays are not bent enough [2].

[a] [b]

Fig. 2.2: Sketch representing [a] positive and [b] negative spherical aberration.

2.2.3. Coma

Coma aberration, also known as comatic aberration, refers to the case where the
magnification varies across the entrance pupil, resulting in off-axis objects appear-
ing comet-like. In other words, skew rays passing through a lens fail to behave like
meridional rays.

Fig. 2.3: Comatic aberration forming a comet shaped image.
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2. Theory

Compared to spherical aberration, which results from the failure of meridional rays
to obey the paraxial approximation, coma arises from the inability of skew rays to
behave like meridional rays.

2.3. Mathematical treatment of laser beams

The wave equation is a partial differential equation that characterizes the behaviour
of waves in a medium. When a wave travels through a medium, it causes the material
to experience deformation and stress. To solve the wave equation, it is necessary to
know the displacement and stress at any point along the beam, as functions of both
time and position. For this purpose, the wave equation can be obtained from the
Maxwell equations. Assuming no free charge or free current (ρf = 0; Jf = 0).

∇ ·E = 0, (2.3)

∇ ·H = 0, (2.4)

∇2 ×E = −µ0µr
∂H

∂t
, (2.5)

∇2 ×H = ϵ0ϵr
∂H

∂t
. (2.6)

Taking the curl of the eq 2.5 and substituting in Maxwell eq 2.3 and eq 2.6 to solve
for E, we get:

∇2E− ϵ0µ0ϵrµr
∂2E

∂2t
= 0 (2.7)

⇒ ∇2E− n2

c2
∂2E

∂2t
= 0, (2.8)

where c2 = 1/ϵ0µ0 is the speed of light and n2 = ϵrµr is the refractive index of the

medium. Using the expression for wave velocity v, v2 = c2

n2 we have the equation,

∇2E− 1

v2
∂2E

∂2t
= 0. (2.9)

Laser beams are coherent optical beams with a finite transverse extent. This finite
extent or spatial confinement is achieved by ensuring that the solutions to the wave
equation, which determine the behavior of the beam, decay exponentially transverse
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2. Theory

to the direction of propagation, in our case in the z-direction. One method of de-
termining the shape of these confined beams involves using the slowly varying enve-
lope approximation. This approximation involves expressing the field as a product of
monochromatic carrier plane wave and an envelope varies more gradually in the trans-
verse direction compared to the wavelength of the wave in the longitudinal direction.
This approximation allows us to more accurately describe real life laser beams and
take into account their finite transverse extent. This leads us to the paraxial wave
equation. To derive the paraxial wave equation, we begin by substituting a plane wave
solution for eq 2.10 that propagates in the z-direction into eq 2.9.

E(r, t) = E0e
i(k·z−ωt) (2.10)

Noting k2 = ω2n2

c2
and using ∇2

⊥ ≡ ∂2

∂x2 + ∂2

∂x2 we get,

∇2
⊥E0 +

∂2E0

∂z2
+ 2ik

∂E0

∂z
− k2E0 +

ω2

v2
E0 = 0 (2.11)

Using the slowly varying envelope approximation, where E0 is the envelope. We can
neglect one of the terms. ∣∣∣∣∂2E0

∂z2

∣∣∣∣≪ ∣∣∣∣2ik∂E0

∂z

∣∣∣∣≪ ∣∣k2E0

∣∣ (2.12)

Therefore the expression can be written in the following way, taking additionally into
account k2 = ω2n2

c2
= ω2

v2
.

∇2
⊥E0 + 2ik

∂E0

∂z
= 0 (2.13)

This expression is known as the paraxial wave equation. Although it is not an accurate
description for beams under strong focusing conditions, it is often used as a simplified
approximation for practical reasons. In the remaining section, we will discuss laser
beams in within this approximation.

2.4. Gaussian beams

Gaussian beams are the most commonly used type of laser beams and are also used
in this thesis. They are characterized by a bell-shaped intensity profile, as shown in
Figure 2.4. In other words, a profile that has highest intensity at the center of the
beam which falls off towards the edges. Another property of a Gaussian beam, is
beam divergence, which relates the size of the beam with the propagation distance.

6



2. Theory

Fig. 2.4: Gaussian beam profile, where red indicates high intensity and blue low in-
tensity.

Additionally, it exhibits the least angular divergence and can be focused to achieve
the smallest spot size.

We will now attempt to derive the mathematical expression which describes a Gaussian
beam by assuming a trial solution of the form,

E0(r, z) = A(z)e
ikr2

2q(z) (2.14)

where A(z) represents the amplitude and q(z) determines the properties of the Gaus-
sian beam as it propagates. To determine the form of these to variables, we substitute
eq 2.14 into the paraxial wave solution eq 2.13. This would give:

2ik

q
− k2r2

q2
+ 2ik

(
1

A

dA

dz
− ikr2

2q2
dq

dz

)
= 0 (2.15)

Equating terms in like powers of r, leads us to the following relations:

1

A

dA

dz
= −1

q
, (2.16)
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2. Theory

dq

dz
= 1 ⇒ q = q0 + z (2.17)

Integrating now the equation eq 2.16, we get:

A(z) =
q0

q0 + z
. (2.18)

Substituting for A(z) in the trial beam solution 2.13, we get:

E0(r, z) =
q0

q0 + z
e

ikr2

2q(z) (2.19)

For large propagation distances, we can use the approximation z → ∞, which leads
to the limit q → z . Eq 2.10 can then be written as:

E(r, z) = E0(r, z)e
i(kz−ωt) =

q0
z
e

ikr2

2z ei(kz−ωt) (2.20)

⇒ E(r, z) =
q0
z
eik(z+

r2

2z
)e−iωt (2.21)

To have a more intuitive understanding of q(z) and A(z), we can compare equation
eq 2.21 to the expected wave equation for very large propagation distances z → ∞.
In this case, the wave should look like a spherical wave for a point source, which can
be expressed as:

E(r, z) =
eikR

R
e−ωt (2.22)

where R =
√
r2 + z2 is the radius of curvature in the phase front. Since R ≫ r, we

can expand R as:

R ≈ z +
r2

2z
+ ... (2.23)

1

R
≈ 1

z
− r2

2z3
+ ... (2.24)

Therefore, substituting for 1/R into eq 2.22 and taking the limit of z ≫ r, leads us to
the paraxial-spherical wave equation:
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2. Theory

E(r, z) =
1

z
eik(z−

r2

2z
)e−iωt (2.25)

It is clear, that the result is equivalent to eq 2.21 And hence, q is the radius of curvature
of the phase front near the z-axis. Examining eq 2.19, we conclude that q must be
complex. This leads to the following expression for the electric field associated with
the beam:

E(r, z) = A(z)e
ik[z+ r2

2z
Re

(
1

q(z)

)
]
e

−kr2

2
Im

(
1

q(z)

)
e−iωt (2.26)

Here, the second exponential expression represents a Gaussian function with a width
of w(z). In simpler terms, we can express it as follows:

e
−kr2

2
Im

(
1

q(z)

)
= e

−r2

w(z)2 (2.27)

where

w(z) =

[
k

2
Im

(
1

q(z)

)]−1/2

(2.28)

Note that Im
(

1
q(z)

)
decreases away from z=0, and thus w(z) has a minima at z=0.

Therefore, w0 is the beam waist. From Eq. 2.20 we can also conclude that surfaces of
constant phase must obey:

z +
r2

2z
Re

(
1

q(z)

)
= const. (2.29)

Taking into account that away from z = 0, Re
(
1
q

)
must be non-zero and the phase

fronts nearly parabolic. We define the radius of curvature of the wavefront, such that:

1

R(z)
= Re

(
1

q(z)

)
(2.30)

This leads to the general expression for the complex beam parameter, q:

1

q(z)
=

1

R(z)
+

2i

kw(z2)
(2.31)

where w(z) is a measure of the decrease of the field amplitude, E0, with the distance
from the axis, which is Gaussian in form. The minimum diameter of the Gaussian is
2w0 and occurs at the beam waist where the phase front is plane.
By using equations eq 2.17 and eq 2.31, and equating the real and imaginary compo-
nents, we can derive the explicit form of beam width and wavefront curvature as a
function of z..

w2(z) = w2
0

[
1 +

(
2z

kw0

)2
]
, (2.32)

9



2. Theory

R(z) = z

[
1 +

(
kw0

2z

)2
]
. (2.33)

Lastly, it’s worth mentioning that A(z) experiences a phase shift of π as it propagates
from a large negative value of z, passes through the beam waist, and reaches a large
positive value of z. This particular distance is commonly referred to as the Rayleigh
length or Rayleigh range, and is given by zR = kw2

0/2.
The transverse intensity profile of the Gaussian beam takes the form:

I(r, z) = |A(r, z)| e
(

−2r2

w(z)2

)
(2.34)

where A(r) is the amplitude on the z-axis and has dimensions of the field, while the
beam width is determined by w(z). Both of these parameters undergo changes due
to diffraction. The radial distance from the axis of the beam, denoted as r, is defined
as r =

√
x2 + y2. An intuitive visual representation of the parameters are shown in

the Figure 2.5 below. From the Figure 2.5 we can conclude that at large distances
(z ≫ zR), w increases linearly with z; hence the beam divergence angle θ, given in
radians, can be defined, due to diffraction, as

θ = lim
z→∞

w(z)

z
≃ w0

zR
(2.35)

The following Figure 2.5 shows the parameters presented in this section.

zR

z z

θ

w(z)

w0

√
2w0

zR

Fig. 2.5: Useful beam parameters. Evolution of the radius of the Gaussian beam along
the z-axis as a function of the beam waist w0, the Rayleigh range zR, and
the divergence angle θ. The lower part shows intensity projections at three
different positions of a Gaussian beam. The projection at z = 0 has the
narrowest waist.
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3. Setup and methods

In this section, the methods and experimental setups used in this thesis are presented,
including the assembly of the microtrap objective. These techniques were essential
for characterizing the optical properties of the optical system and comparing exper-
imentally obtained data with simulations. Goal in presenting these methods is to
provide a comprehensive understanding of the techniques used in this study and their
significance in achieving precise measurements.

3.1. Assembly and alignment of microtrap objective

This thesis primarily discusses the design, assembly and characterization of a multi-
lens objective (Fig: 3.1) that focuses a laser beam into a tightly confined spot used
for creating optical microtraps. The system was designed by combining five different
commercial lenses, and optimizing the distances between them to minimize aberrations
and misalignment. To ensure the lenses were correctly spaced, spacer rings were
designed and installed in the system.

LB
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LC
10
93

LA
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17

LE
14
18

LE
10
76

2x SM2RR

2x
Sp

ace
r R

ing
s

5x
Sp

ace
r R

ing
s

SM
2L

20C

2x SM2RR

SM
2M

25

Fig. 3.1: Schematic of the microtrap objective.

Achieving stable and precise alignments is crucial for sensitive optical measurements.
In our experiment, a laser with a wavelength of 1064nm is used, which falls in the
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3. Setup and methods

near-infrared region of the electromagnetic spectrum. Given that infrared radiation is
invisible to the human eye, aligning the beam through the optical axis of the system
is challenging. To overcome this, we used a laser beam in the visible region (626 nm)
as a reference and align it centrally through the optical system. Following this, the
1064 nm beam was overlapped onto the visible beam to acheive an indirect alignment,
as shown in the Figure 3.2 below. Following this, a beam profiler is placed at two
different points to further refine the alignment.

Fig. 3.2: Schematic of the experimental setup for focal spot measurement of the 1064
nm laser beam. 626 nm laser beam is used as a reference for aligning the
1064 nm beam.

3.2. Knife edge measurement

One commonly used method for characterizing the size of laser beams is through knife
edge measurement. We used this technique to measure the size of the beam close to
the focal plane. This method requires a sharp knife edge or blade, a high precision
piezoelement connected to a translation stage capable of moving in all three directions,
and a power sensor. Here, the knife edge is placed in the path of the laser beam and
moved slowly across the beam using the piezoelement translation stage. The sensor
measures the laser power as the knife edge passes through the beam, allowing for the
determination of the beam profile and size. Therefore, this technique is particularly
useful for measuring the size and intensity of the focal point.

Fig. 3.3: Example scheme of measured signal from knife edge measurement.

12



3. Setup and methods

The data obtained through knife edge measurement can be analysed with the help of
the error function. The error function is an essential mathematical tool for modeling
the intensity distribution of the laser beam. For a Gaussian beam, the recorded
intensity profile in the x-direction corresponds to an error function of the following
form [5]:

I(x, z) =
P (x)

A
=

P0

2A

[
1 + erf

(√
2x

w0

)]
, (3.1)

where P0 = (π/2)w2
0I0, x is the position of the knife edge perpendicular to the beam’s

propagation and erf(z) is the Gaussian error function defined as

erf(z) =
2√
π

∫ z

0
e−t2dt. (3.2)

Thus, the error function can also be used to fit the experimental data obtained through
knife edge measurement to a theoretical model, allowing for the determination of the
beam size. Data points can then be fitted with the fitting function:

I(x, z;α, x0, w, c) = α ·

[
1 + erf

(√
2(x− x0)

w(z)

)]
+ c, (3.3)

where α = P0/2A. In addition, two other parameters were added in the fit function,
parameter x0 and the offset c. The inclusion of the parameter x0 enables a shift of
the function along the x-axis. This adjustment is required due to the inability to set
the center of the beam as the zero position on the piezoelement. The purpose of the
offset c is to allow for a possible power offset on the power sensor. Lastly, w(z) is the
beam radius as a function of the propagation distance z.
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3. Setup and methods

3.3. Focal spot size measurement

To find the focus of a Gaussian beam, one typically measures the beam radii w(z)
at various positions z around the focus. However, a rough estimation of the position
of the focus can be approached through the following methods. One useful method
involves observing the laser beam’s cross-section on a viewer card and examining the
shadow cast by the cutting edge. If the shadow appears on the same side as the
cutting edge, it is located behind the focus. Conversely, if the shadow appears on the
opposite side, the cutting edge is in front of the focus. This effect is illustrated in
Figure 3.5.

[a]

[b]

Fig. 3.4: Visual representation of a knife edge passing through a beam close to the
focus. If the knife edge is before the focus, the shadow appears on the
opposite side (a). However, if it is located after the focus, the shadow forms
on the same side (b).

As the cutting edge approaches the focus, the shadow becomes more difficult to ob-
serve. At the focus position, the beam disappears almost instantaneously, making it
challenging to determine the shadow’s location. Nevertheless, this approach provides
a rough estimate of the cutting edge’s position relative to the focus.

Another approach involves placing a piece of paper between the two objectives and
observing a spark, which indicates the beam focus. For an invisible beam, such as the
1064 nm beam, this method may be more practical and efficient. Observing the beam
directly on a viewer card is difficult,, especially at low powers.

After approximately finding the position of the focal point, the knife edge can then
be placed either in front or behind the focal point and moved,in small steps, towards
the focal point and then through it to have a profile of the beam close to the focal
plane. The obtained beam radii from each step, w(z), can be then plotted against
their corresponding z positions. Their behavior follows eq 3.3, which describes the
dependence of the beam radius on the axial position z. We then fit the collected data
using the following function [5]:
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3. Setup and methods

w(z;w0, z0) = w0

√
1 +

(
z − z0
zR

)
(3.4)

where w0 is the sought fit parameter, which represents the minimum beam waist,
zR is the Rayleigh range and z0 is the offset. However, laser beams used in real life
are not always perfectly gaussian and may have aberrations or imperfections in their
profile. The fitting function 3.4 must then be modified to also fit beams which are
not perfectly gaussian. This is done by introducing the beam quality factor M2. The
modified fit function takes the form:

w(z;M2, w0, z0) = w0

√
M2 +M2

(
z − z0
zR

)
(3.5)

The beam quality factor M2 is a measure of the quality of a laser beam. It is a
dimensionless quantity that describes how closely a laser beam resembles an ideal
Gaussian beam. Mathemaically, M2 is given by the expression [10]:

M2 =
π

2

w0 · θ
λ

(3.6)

where θ is the divergence angle mentioned in figure 2.6. An ideal Gaussian beam has
an M2 value of 1. In contrast, a beam with M2 > 1 indicates that it deviates from the
ideal Gaussian beam and has a more complex profile, while with M2 < 1 it indicates
that the beam is divergent and has a lower quality.

3.4. Simulation results of aberrations with OpticStudio

The seidel aberrations diagram from Zemax, presents a graphical representation of the
seven seidel coefficients for each surface of the lens. It also displays the total sum of
each seidel coefficient in the focal plane, specifically for a selected wavelength. These
seidel coefficients include spherical aberration, coma, astigmatism, field curvature,
distortion, axial color, and lateral color.

The following Figure 3.5 shows the corresponding seidel diagram of the objective for
the wavelength λ = 1064 nm . When focusing a laser beam through a glass window,
spherical aberration is the primary aberration that occurs. The objective is designed in
a way that the spherical aberration contributions from each surface cancel each other
out. This becomes evident upon observing the total sum of each seidel coefficient in
the focal plane, which, in this case, implies that there is minimum to no spherical
aberration resulting from the objective.
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3. Setup and methods

Fig. 3.5: Seidel diagram of aberrration results from Zemax

3.5. Resolution measurement

Another common method of characterizing the performance of an objective is by mea-
suring its resolution. This is important because the objective’s resolution determines
how closely the atoms can be trapped, and the accuracy with which they can be po-
sitioned and manipulated. For this purpose, a commonly used test target known as
the USAF 1951 target 1 was used to measure the resolution. The USAF 1951 target
consists of multiple sets of horizontal and vertical lines in various sizes, enabling a
simultaneous horizontal and vertical resolution measurement at discrete spatial fre-
quencies (line pairs per millimeter) in the object plane.

Fig. 3.6: USAF 1951 target.

As shown in the Figure 3.5 above, each element is assigned a number from 1 to 6
and has a unique set of widths and spacings. Groups of six consecutive elements

1Erdmund 2” x 2” Negative, USAF 1951 High Resolution Target

16



3. Setup and methods

are identified with a number ranging from -2 to 7, which can be positive, negative,
or zero. These group and element numbers are then used together to determine the
spatial frequency (in line pairs per millimeter or lp/mm). The resolution (defined as
the number of resolvable line pairs per millimeter), is given as [6]:

R[lp/mm] = 2G+E−1
6 (3.7)

where R is resolution in lp/mm, G is group number and E is the element number. A
visual representation of the experimental setup for measuring the resolution is shown
in the figure below. In this setup, an achromatic doublet lens is attached to the
microtrap objective to image the target onto a camera sensor. The image of the
target on the camera/beam profiler is monitored on a PC directly.

Fig. 3.7: Setup for resolution measurement. The USAF 1951 target is placed at the
focal plane of the micro objective and the camera is placed at the focus of
the achromat lens.
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4. Performance evaluation of the
microtrap objective

This section focuses on evaluating the performance of the micro-objective. The exper-
imental setup used for this purpose is presented in the following section.. Therefore,
this section begins by presenting the experimental setup, including the beam profile
and size utilized in the experiment. Additionally, measurements to estimate the beam
size and profile for the incident beam and the focussed down beam close to the beam
waist are presented in the following sections. Finally, the resolution of the objective
will be determined by using the USAF 1951 resolution chart.

4.1. Setup

In this experiment, a high-powered laser 1 with a wavelength of λ = 1064nm was used.
The output of the laser is divided between the experiment and a beam dump using a
half waveplate (HWP) and a plate beamsplitter (PBS) arrangement for flexibility. A
HWP optimizes the polarization of the beam going into the experiment for optimal
coupling into an Acousto-optic modulator (AOM).

The 0th order diffraction beam from the AOM goes into a beam dump whereas the
first order is directed through 2 magnification stages (stage 1 and stage 2)for enlarging
the beam. Stage 1 has a magnification factor of m = 9 and stage 2 has a magnification
factor of m = 2.65. After magnification, the beam size is close to 25 mm. A large
beam is better suited for generating a tight and deep optical dipole trap.

The beam is then focused down using the objective and an improvised multi lens
system is placed after the focus to collect light and direct it onto a power sensor.A
knife-edge mounted on a piezoelectric element, or piezoelement, is used to perform
knife-edge measurements for evaluating the beam profile and size.A combination of
three piezoelements creates a 3 dimensional translation stages which can be used to
move the knife edge into the beam with sub-micrometer precision. The knife-edge is
placed close to the focus of the beam, as shown in Figure 4.1.

1Coherent Mephisto MOPA, Ultra-Narrow Linewidth High-Power CW DPSS Laser
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4. Performance evaluation of the microtrap objective

Fig. 4.1: Knife-edge measurement using a pizeoelement mounted knife-edge.

4.2. Beam profile measurement

The objective under consideration has been designed for operation with collimated
gaussian laser beams. Therefore, it is important to study the beam profile of the
incident beam and determine how close it is to an ideal gaussian beam. A beam that is,
for e.g., elliptical or has a non-uniform intensity distribution would lead to a decrease in
performance of the objective and consequently, impact the optical microtrap generated
using the objective. Therefore, an image of the beam profile was captured using a
beam profiler camera 2 directly before Stage II. This position was chosen because the
beam size after Stage II is too large for the camera sensor to accomodate.

[a] [b]

Fig. 4.2: Beam profile of the 1064 nm laser at [a] 800mW and [b] 200mW.

Based on the images obtained, It can be observed that the beam did not exhibit a
perfectly Gaussian profile, but rather a close approximation to it. Additionally, a knife-
edge measurement was performed directly before the objective in both, horizontal and
vertical directions to more accurately determine the size of the beam. Instead of using
a piezoelectric element, a manual translation stage with micrometer precision was
utilized for this measurement since despite having a lower resolution, they have a
higher range which is more important here. Using the error function as described in
section 3.5, we fit the data obtained from these knife edge measurements to extract

2Edmund Optics Beam Profiler 4M
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4. Performance evaluation of the microtrap objective

the σ width and error values of each measurement. Figures 4.3 and 4.4 show a plot
of the data points and the fit for the horizontal and vertical directions respectively.

The horizontal measurement was performed by moving the a vertical knife edge (with
respect to the optical table) horizontally across the beam. The procedure is repeated
three times to account for statistical variations. As shown in Figure 4.3, there is
minimal variation among the data points from the three measurements. This indicates
that the beam remains stable on the horizontal axis and that the horizontal beam
waist is consistent. Averaging the three σ values obtained from the measurements,
the average radius of the beam was found to be 4σ = 28.90 ± 0.18 mm. This is an
acceptable beam size to work with when using 2-inch optics.

Fig. 4.3: Plot of the power P as a function of the position x of the knife edge for the
incident beam λ = 1064 nm. Eq 3.3 was used to fit the data. The resulting
sigma widths are; σ1 = 7.41±0.06 µm, σ2 = 7.18±0.03 µm, σ3 = 7.07±0.04
µm

For the vertical measurement, the knife edge was placed horizontally with respect to
the optical table’s surface. However, unlike the horizontal measurement, there were
noticable variations among the three data sets as depicted in Figure 4.4. These results
suggest that the beam was not stable along the vertical axis. By averaging the three
σ values obtained from the vertical measurement, the average beam radius was found
to be 4σ = 20.46± 0.17 mm.
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4. Performance evaluation of the microtrap objective

Fig. 4.4: Plot of the power P as a function of the position x of the knife edge for the
incident beam λ = 1064nm. Eq 3.3 was used to fit the data. The resulting
sigma widths are; σ1 = 4.86±0.05 µm, σ2 = 5.15±0.03 µm, σ3 = 5.33±0.04
µm

Based on these results, it can be concluded that the beam does not exhibit a perfectly
Gaussian profile, but rather a close approximation to it. These measurements confirm
that the beam is elliptical in shape, and therefore it can have a negative effect on the
performance of the microtrap. The ellipticity of the beam can lead to a non-uniform
trap depth, which can affect the atom trapping efficiency of the microtrap.

Tab. 4.1: Size of the beam with a wavelength of λ = 1064 nm.

Horizontal Vertical
4σ [mm] 28.90± 0.18 20.46± 0.17

4.3. Focal spot stability

To investigate the effects of the statistical variations in the beam size as seen in the
previous section on the focal point of the microtrap objective, we perform further
measurements. In this section, 10-90 knife edge measurement method is used at
different distances from the focus. The 10-90 method approximates the size of a beam
by noting the positions of the knife-edge at which 10% and 90% of the total beam
power is passing through. This distance is defined as the 10-90 size of the beam. This
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4. Performance evaluation of the microtrap objective

method was used for both the horizontal and vertical axes to observe the stability of
the focal point for both axes.

)

Fig. 4.5: Plot of the 10/90 radius as a function of the position z of the knife edge
for the incident beam λ = 1064nm. Eq 3.5 was used to fit the data. The
resulting radii of the focal spot are; r1 = 7.45 ± 1.28 µm, r2 = 5.80 ± 1.51
µm, r3 = 6.20± 1.72 µm.

)

Fig. 4.6: Zoomed in plot of the 10/90 radius as a function of the position z of the knife
edge for the incident beam λ = 1064nm. Eq 3.5 was used to fit the data.
The resulting radii of the focal spot are; r1 = 7.45±1.28 µm, r2 = 5.80±1.51
µm, r3 = 6.20± 1.72 µm.
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4. Performance evaluation of the microtrap objective

Upon examining the plot 4.5 along with the zoomed plot 4.6, it can be inferred that
the focal spot in the horizontal direction is highly stable. The three measurements
were fitted, and the resulting shift parameters were obtained as z01 = 770.00 ± 2.60
µm, z02 = 760.00 ± 2.81 µm, and z03 = 760.00 ± 3.39 µm, which confirms the sta-
bility of the focal spot. Additionally, the 10/90 knife edge measurement provides an
approximation of the radius of the beam, which is accurate within a certain degree
of uncertainty. Therefore, averaging the r values, yields the average radius of the
horizontal measurement as ravg = 6.48± 1.50 µm.

)

Fig. 4.7: Plot of the 10/90 radius as a function of the position z of the knife edge
for the incident beam λ = 1064nm. Eq 3.5 was used to fit the data. The
resulting radii at focal spot are; r1 = 5.33 ± 0.39 µm, r2 = 4.92 ± 0.33 µm,
r3 = 6.49± 0.37 µm.

In the case of the vertical measurement, the plot 4.7 and its zoomed plot 4.8 confirm
that the variations obtained from the vertical beam size measurement of the previous
section are directly affecting the stability of the focal spot in the vertical direction.
The resulting shift parameters obtained from fitting the three measurements are; z01 =
937.10 ± 0.55 µm, z02 = 992.33 ± 0.47 µm, and z03 = 900.59 ± 0.93 µm. However,
based on these measurements alone, it is not possible to determine if the beam exhibits
any symmetric movement or if it stabilizes after a certain period. Nevertheless, the
average radius of the three measurements is ravg = 5.58 ± 0.36 µm, regardless of the
shift in each measurement.
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4. Performance evaluation of the microtrap objective

Fig. 4.8: Zoomed plot of the 10/90 radius as a function of the position z of the knife
edge for the incident beam λ = 1064nm. Eq 3.5 was used to fit the data.
The resulting radii at focal spot are; r1 = 5.33 ± 0.39 µm, r2 = 4.92 ± 0.33
µm, r3 = 6.49± 0.37 µm.

4.4. Focal spot size measurement

As previously mentioned, the size of the focal spot is crucial in determining the effi-
ciency of the objective. Therefore, it is considered one of its most critical properties.
A smaller focal spot leads to higher trap depth and better confinement of the atoms,
resulting in a higher density of trapped atoms. Meaning that the atoms are tightly
confined to the center of the trap, reducing the chances of them escaping due to ther-
mal fluctuations or collisions with other atoms. Moreover, the loading rate of atoms
into the trap is also affected by the size of the focal spot. A smaller focal spot leads
to a higher loading rate as the atoms are more efficiently captured by the trap. Thus,
accurate measurements of the focal spot size are essential to optimize the performance
of the objective.

This section presents detailed knife edge measurements performed at various positions
in the z direction for both the horizontal and vertical direction. The 2σ values acquired
from each error function fit at different positions are plotted as a function of their
corresponding position in z. Subsequently, the data is fitted using equation 3.5, which
yields four key parameters, namely, the waist w0, the offset z0, the Rayleigh range zR,
and the quality beam factor M2. These parameters are discussed in greater detail in
section 3.3 and visually presented in Figure 2.5. Another important value computed
is R2, which reflects the quality of the fit. An R2 value of 1 indicates the best fit
possible.
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4. Performance evaluation of the microtrap objective

Fig. 4.9: Graph of the radii 2σ as a function of the position z of the knife edge for
the incident beam λ = 1064nm. The data points are shown in blue and the
fit function in red. The resulting fit parameters are; w0 = 5.94 ± 1.18µm,
z0 = 250.28± 1.58µm, zR = 15.00± 3.03µm, R2 = 0.98, with set M2 = 1.

Upon analyzing the plot shown in Figure 4.9, it is apparent that there are noticeable
fluctuations in the data points. As a result, the fitting of the data points with the
Gaussian beam fit function 3.5 becomes uncertain. However, after trying various
values of M2, it was found that only M2 = 1 provided the best fit for the data. It
is important to note that the measurement for this plot took an entire day, and the
AOM was turned on throughout the duration of the measurement.

Having the AOM turned on for an extended period can cause various negative effects
on the beam quality. One of the most significant effects is the generation of acoustic
noise that can cause fluctuations in the intensity of the laser beam. As a result,
variations in the focal point size can occur, reducing the overall quality of the beam.
In addition, it is known, that the AOM can generate heat. This, can cause thermal
fluctuations that affect the beam quality. And since the longer the AOM is on, the
warmer it gets, this is the most probable source of error. Thus, these fluctuations
can cause beam drift and increased noise in the measurement, leading to inaccurate
results.
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4. Performance evaluation of the microtrap objective

Fig. 4.10: Magnified graph of the radii 2σ as a function of the position z of the knife
edge for the incident beam λ = 1064nm at focus. The data points are
shown in blue and the fit function in red. The resulting fit parameters are;
w0 = 5.94±1.18µm, z0 = 250.28±1.58µm, zR = 15.00±3.03µm, R2 = 0.98,
with set M2 = 1.

To analyze the data points at the focal spot, a zoomed image of the previous plot 4.9
is presented in Figure 4.10. This enables a closer inspection, revealing that the fit does
not match the data points in this range, possibly due to the influence of the overall
data points of the measurement. Notably, significant fluctuations can be observed
immediately after the focal point. The AOM is one source of error that can cause
these fluctuations, but it is also possible that the knife edge may contribute to the
observed deviations from the fit. This is because any imperfections on the knife edge
or any misalignment of the knife edge with respect to the beam can cause distortions
in the measured intensity distribution. These distortions can lead to inaccuracies in
the beam profile measurements and affect the fitting of the data with the Gaussian
beam fit function. It is uncertain whether the damage threshold of the knife edge
measurement exceeds the power density Pd = 1.77×105W/cm2 for the focal point with
a beam waist of w0 = 5.94± 1.18µm and an average maximal power of P = 200mW.
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4. Performance evaluation of the microtrap objective

Fig. 4.11: Graph of the radii 2σ as a function of the position z of the knife edge for
the incident beam λ = 1064nm at focus. These are cut data points from the
overall measurement and are shown in blue and the fit function in red. The
resulting fit parameters are; w0 = 7.99 ± 0.43µm, z0 = 251.36 ± 1.58µm,
zR = 26.28± 2.97µm, R2 = 0.83, with set M2 = 1.

For the purpose of comparison, data points from the focal spot region were separated
or better said isolated from the overall measured data points shown in Figure 4.9 and
plotted with the exact same way, as shown in Figure 4.11. By doing so, a new fit
could be performed on the isolated data points, resulting in parameters that are a
better match to the data. The plot still shows noticeable fluctuations, particularly
after the focal point. Although the lowest data points do not fit well with the Gaussian
fit, they fall within the error range of the beam waist measurement, which is w0 =
7.99±0.43µm. . It is worth noting that the focal point waist in this plot is significantly
higher compared to the focal point waist w0 = 5.94 ± 1.18µm obtained from the
overall data points in Figure 4.10. To address this uncertainty, repeating the same
measurement at least two more times and determining the average waist of all the
measurements may be necessary.
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4. Performance evaluation of the microtrap objective

Fig. 4.12: Graph of the radii 2σ as a function of the position z of the knife edge for
the incident beam λ = 1064nm. The data points are shown in blue and the
fit function in red. The resulting fit parameters are; w0 = 6.99 ± 0.67µm,
z0 = 273.53± 1.37µm, zR = 23.65± 1.37µm, R2 = 0.98, with set M2 = 1.

After examining the data of the vertical measurement, as displayed in Figure 4.12,
notable fluctuations are observed directly following the focal spot. These fluctuations
are similar to the data obtained from the third vertical knife edge measurement il-
lustrated in Figure 4.8. Such similarities suggest that either the AOM is inducing a
systematic effect on the beam, that can can only be detected on the vertical direc-
tion, or the knife edge was damaged during the focal point measurement, unable to
withstand the high power density at that location.

Despite the fluctuations observed in the vertical measurement, the Gaussian function
was found to be a better fit for the data points in comparison to the horizontal
measurement. This was further confirmed by the zoomed version, which showed a
good match between the fit and data points. For the purpose of analysis, data points
from the focal point region were also isolated, similarly to Figure 4.11, from the overall
measured data points and plotted with the exact same way. The resulting plot as well
as the parameters were found to be in good agreement with the magnified version.
Therefore, the initial parameters found in Figure 4.12 will be used for evaluation.
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4. Performance evaluation of the microtrap objective

Fig. 4.13: Magnified graph of the radii 2σ as a function of the position z of the knife
edge for the incident beam λ = 1064nm at focus. The data points are
shown in blue and the fit function in red. The resulting fit parameters are;
w0 = 6.99±0.67µm, z0 = 273.53±1.37µm, zR = 23.65±1.37µm, R2 = 0.98,
with set M2 = 1.

To summarize the obtained focal spot waist values, the following Table 4.2 was cre-
ated. The table includes theoretical expected values wTheo obtained from the Zemax
software, experimental values w0 obtained from fitting the overall data points, and
values w0cut obtained from fitting the isolated focal point data points. Upon compar-
ing the data, it can be inferred that the values of w0cut are more reliable than the
values of w0. This is due to the beam’s ellipticity, proven in section 4.2, where the size
of the beam in the horizontal direction is larger compared to the vertical direction.
Hence, a larger focal spot on the horizontal axis was anticipated.

Tab. 4.2: Focal point waist of Mk. II for λ = 1064nm.

Horizontal Vertical
wTheo [µm] 1.50± 0.00 1.50± 0.00

w0 [µm] 5.94± 1.18 6.99± 0.67

w0cut [µm] 7.99± 0.43 6.99± 0.67
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4.5. Resolution measurement

As stated in section 3.5, measuring the resolution of a objective is crucial because
it provides an estimation of the accuracy with which atoms can be positioned and
manipulated, as well as how closely they can be trapped. To ensure accurate imaging,
an achromatic doublet lens was attached to the objective (f = 1000 mm), reducing
the effects of chromatic aberration. The beam size was also decreased by coupling
the beam into a fiber rather than using magnification stages, which was done in the
previous experimental setup shown in Figure 4.1. A schematic of the experimental
setup for measuring resolution is shown in Figure 3.7.

Fig. 4.14: Imaging the USAF 1951 resolution chart.

To achieve high-resolution imaging, precise alignment within the range of micrometers
is required. This means that investing more time in setup alignment with utmost
precision can probably lead to better imaging than the current one. The current
optimal resolution imaging is presented in Figure 4.14. It is worth noting that the
target used is a negative USAF 1951 target, where chrome covers the substrates,
leaving the patterns clear and resulting in high reflectivity. The image was taken with
a beam profiler camera 3, with pixel size of 5.5 × 5.5 µm. The aim of the alignment
is to be able to observe a line pairs at the highest group with the highest element
possible. Once this is achieved, the corresponding group and element numbers can be
plugged into eq 3.7. The number of lines per millimeter for the groups and elements
shown in Figure 4.14 are tabulated in Table 4.3.

3Edmund Optics Beam Profiler 4M

30



4. Performance evaluation of the microtrap objective

Tab. 4.3: Number of line pairs per millimeter in the USAF 1951 resolution test target.

Group number
Element 6 7 8 9

1 64.0 128.0 256.0 512.0

2 71.8 143.7 287.4 574.7

3 80.6 161.3 322.5 645.1

4 90.5 181.0 362.0 724.1

5 101.6 203.2 406.4 812.7

6 114.0 228.1 456.1 912.3

Since the aim of this measurement is to be able to observe a line pairs at the highest
group with the highest element possible. Zooming into the resolution image at Group
8 Element 1, one can distinguish the line pairs on the chart, as shown in Figure 4.15.
Therefore, this level of resolution will be considered as the highest resolution achieved
by the microtrap objective.

Fig. 4.15: Image of the resolution using the USAF 1951 target. Maximum resolution
achieved is Group 8 Element 1.

For a better understanding of the resolution value, one can refer to the table below A.2
which shows the width values of each line in their corresponding group and element
number.
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Tab. 4.4: Width of a line in micrometers in the USAF 1951 resolution test target.

Group number
Element 6 7 8 9

1 7.81 3.91 1.95 0.98

2 6.96 3.48 1.74 0.87

3 6.20 3.10 1.55 0.87

4 5.52 2.76 1.38 0.69

5 4.92 2.46 1.23 0.62

6 4.38 2.19 1.10 0.55

In conclusion, the objective can resolve an image of a line with a width of w = 1.95
µm. Therefore, the magnification of the imaging system can be inferred as -31.4,
which matches well with the focal length of 31.85 mm.
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5. Outlook & Discussion

In this work, we were able to characterize a high numerical aperture objective. We
introduced the concept of optical aberrations and their impact on the performance of
the objective. Additionally, we discussed how the size and profile of the laser beam
directly impacts its performance. To test this, we used knife-edge measurements to
estimate the size of the incident beam and obtained the values 4σ = 28.90 ± 0.18
µm in the horizontal and 4σ = 20.46± 0.17 µm in the vertical direction, respectively,
indicating that the beam is clearly elliptic. However, as stated previously, the objective
was designed to work with gaussian beams and performance is negatively impacted
when using elliptic beams. To investigate this and to determine the stability of the
focus over extended operation, we used the 10-90 knife-edge method to estimate the
size of the beam close to the focal region. It was evident that the beam also behaves
elliptically in the focal region and that there is a statistical variation in the measured
values of beam size over multiple attempts. These deviations may have been caused
by either a non-optimal coupling of the beam into the AOM or because the laser is
unstable in the vertical direction. Next, more detailed and precise measurements of
the focal spot waist in both horizontal and vertical direction were performed using a
knife-edge mounted on a high precision piezoelectric translation stage. This resulted
in the values of w0 = 7.99± 0.43 µm in the horizontal direction and w0 = 6.99± 0.67
µm in the vertical direction. The data obtained from these measurements displayed
noticable variations over multiple runs, especialy right after the focal spot, which
could have originated from several sources of error such as acoustic noise, thermal
effects generated by the AOM, or imperfections and misalignment of the knife edge.
Finally, the objective’s resolution was estimated using a USAF 1951 chart, yielding
an approximate spatial resolution of 2 µm. From this data, we can conclude that the
objective should perform adequately and is ready for installation in the Dysprosium
experiment. However, performance could be improved further if the incident beam
was more Gaussian. This can be done by using beam shaping techniques to reduce
ellipticity in the beam. Notably, cylindrical lenses are routinely employed to circularize
elliptical beams. In the future, further tests can be carried out to characterize the
performance of the objective more accurately. For e.g. one could measure the Field
of View (FOV) of the objective, which is the region within which diffraction limited
performance can be expected. On the other hand, a more precise technique to measure
the diffraction limited resolution would be to measure the Point Spread Function
(PSF), which describes the response of an optical system when imaging a point source
of light. A more comprehensive description of an objective’s performance usually
includes these metrics. Furthermore, the techniques and concepts learned from this
design and testing can be easily translated to design objectives for other experiments.
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5. Outlook & Discussion

The design is inherently flexible and can be optimized for different wavelengths and/or
different working distances. A separate imaging objective, optimized for operating at
a wavelength of 626 nm has already been designed and is under assembly. Once
assembled and installed, this imaging objective will be used to collect fluorescence
from Dysprosium atoms trapped inside the ODT.
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A. Appendix

A.1. Optical objective specifications

Tab. A.1: Objective consists of five stock elements from Thorlabs.

S/N Glass EFL D R1 R2 CT

1 LC1093-C N-BK7 -99.6 50.8 -51.5 0 4.00

2 LB1106-C N-BK7 124.6 50.8 127.4 -127.4 8.1

3 LA1417-C N-BK7 149.5 50.8 77.3 0 7.3

4 LE1418-C N-BK7 149.5 50.8 47.9 119.3 5.10

5 LE1076-C N-BK7 99.7 50.8 30.3 65.8 9.7

Fig. A.1: Lenses in the OpticStudio simulation.

Operating wavelength 1064 nm (trapping)
626 nm (probing)
421 nm (probing)

Back focal length (BFL) > 31.85 mm

Maximum overall length (OAL) < 150 mm

Numerical aperture (NA) 0.53

Strehl ratio (on axis) > 0.8
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Tab. A.2: Data of the lenses

Surface Name Material Radius Thinkness Full Aperture

Obj. Air ∞ T0

1 LC1093 N-BK7 ∞ 4.00 34.07

2 Air 51.5 T2 33.93

3 LB1106 N-BK7 127.4 8.10 46.77

4 Air -127.4 1.00 46.77

5 LA1417 N-BK7 77.3 7.30 46.68

6 Air ∞ 1.00 46.38

7 LE1418 N-BK7 47.9 7.30 45.87

8 Air 119.3 1.00 45.04

9 LE1076 N-BK7 30.34 9.70 45.87

10 Air 65.8 T10 45.04

11 VIEWPORT SILICA ∞ 6.35 34.82

12 Vacuum ∞ 15.60 34.21

Distances T0, T2 and T10 are on-axis distances between the surfaces:
T0: Distance from the source point to the negative element.
T2: Distance between the negative element to the positive triplet.
T10: Distance between the last element to the vacuum viewport window.

A.2. Plotting methods and error determination

The data was plotted and analysed using Python with the libraries NumPy, Mat-
plotlib, and Scipy.

First, we read the data into NumPy arrays. Next, we use the SciPy library to obtain
fitting errors. Specifically, we use the scipy.optimize.curve.fit function, which utilizes
least squares to fit a user-defined function to the data while taking into account
specified errors.

To calculate the error propagation of a variable f(x⃗) with known errors
∆x1,∆x2, ...,∆xn, we use the following formula:

∆f(x⃗) =

√(
∂f

∂x1

)2

+

(
∂f

∂x2

)2

+ ...+

(
∂f

∂xn

)2

. (A.1)
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A.3. Assembly and experimental setup pictures

[a] [b]

Fig. A.2: [a] Process of objective assembly and [b] after assembly.

Fig. A.3: Experimental setup of the Mephisto MOPA 1064 nm laser and magnification
stages.
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Fig. A.4: Experimental setup for the knife edge measurement with the piezoelement.

A.4. Tables for horizontal measurement

The obtained data from the detailed and precise measurement of the focal spot are
presented in the following plots, where x is the position of the knife edge, r is the
radius obtained from the 10-90 method and σ is the parameter obtained from the fit.
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Fig. A.5: x = 0µm, σ = 51.63± 1.97µm Fig. A.6: x = 20.04µm, σ = 50.44± 2.11µm

Fig. A.7: x = 40.04µm, σ = 42.75± 1.97µm Fig. A.8: x = 60.80µm, σ = 38.30± 1.65µm

Fig. A.9: x = 80.16.µm, σ = 32.13± 1.61µmFig. A.10: x = 100.14µm, σ = 30.31±1.21µm
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Fig. A.11: x = 120.07µm, σ = 24.93 ±
0.969µm

Fig. A.12: x = 140.32µm, σ = 19.67±0.73µm

Fig. A.13: x = 160.28µm, σ = 17.02±0.65µmFig. A.14: x = 170.49µm, σ = 13.92±0.51µm

Fig. A.15: x = 180.40µm, σ = 11.66±0.32µmFig. A.16: x = 190.58µm, σ = 9.83± 0.28µm
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Fig. A.17: x = 200.58µm, σ = 8.86± 0.20µmFig. A.18: x = 205.31µm, σ = 8.36± 0.17µm

Fig. A.19: x = 210.51µm, σ = 7.62±0.155µmFig. A.20: x = 215.76µm, σ = 6.93± 0.14µm

Fig. A.21: x = 220.4µm, σ = 6.25± 0.13µm Fig. A.22: x = 225.1µm, σ = 5.67± 0.12µm
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Fig. A.23: x = 230.5µm, σ = 4.95± 0.10µm Fig. A.24: x = 235.6µm, σ = 0.10± 2.11µm

Fig. A.25: x = 235.6µm, σ = 4.60± 0.108µm Fig. A.26: x = 240.3µm, σ = 3.94± 0.11µm

Fig. A.27: x = 245.7µm, σ = 4.31± 0.16µm Fig. A.28: x = 250.1µm, σ = 3.94± 0.19µm
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Fig. A.29: x = 255.9µm, σ = 4.11± 0.22µm Fig. A.30: x = 260.7µm, σ = 5.21± 0.25µm

Fig. A.31: x = 270.5µm, σ = 3.92± 0.32µm Fig. A.32: x = 280.3µm, σ = 6.59± 0.56µm

Fig. A.33: x = 290.1µm, σ = 6.85± 0.55µm Fig. A.34: x = 300µm, σ = 9.56± 0.77µm
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Fig. A.35: x = 320.3µm, σ = 12.98± 0.68µmFig. A.36: x = 340.2µm, σ = 17.98± 0.78µm

Fig. A.37: x = 360.4µm, σ = 19.88± 0.74µmFig. A.38: x = 380.8µm, σ = 23.71± 0.83µm

Fig. A.39: x = 400.7µm, σ = 34.57± 0.98µm
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A.5. Tables for vertical measurement

Same as in the case of the measurements for the horizontal direction. The obtained
data from the detailed and precise measurement of the focal spot are presented in the
following plots, where x is the position of the knife edge, r is the radius obtained from
the 10-90 method and σ is the parameter obtained from the fit.

Fig. A.40: x = 0µm, σ = 66.38± 4.11µm Fig. A.41: x = 20.64µm, σ = 40.58± 0.80µm

Fig. A.42: x = 40.25µm, σ = 36.21± 0.57µmFig. A.43: x = 60.38µm, σ = 32.65± 0.54µm
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Fig. A.44: x = 80.33µm, σ = 28.67± 0.43µmFig. A.45: x = 100.4µm, σ = 25.13± 0.50µm

Fig. A.46: x = 120.2µm, σ = 22.07± 0.45µmFig. A.47: x = 140.6µm, σ = 18.90± 0.36µm

Fig. A.48: x = 1605µm, σ = 15.50± 0.28µm Fig. A.49: x = 170.4µm, σ = 14.37± 0.36µm

46



A. Appendix

Fig. A.50: x = 180.7µm, σ = 13.88± 0.29µmFig. A.51: x = 190.3µm, σ = 12.96± 0.33µm

Fig. A.52: x = 200.6µm, σ = 11.27± 0.17µmFig. A.53: x = 210.75µm, σ = 10.03±0.20µm

Fig. A.54: x = 220.8µm, σ = 8.33± 0.13µm Fig. A.55: x = 225.3µm, σ = 7.88± 0.10µm
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Fig. A.56: x = 230.3µm, σ = 7.22± 0.099µm Fig. A.57: x = 240.6µm, σ = 6.11± 0.08µm

Fig. A.58: x = 245.8µm, σ = 5.86± 0.06µm
Fig. A.59: x = 250.3µm, σ = 5.257 ±

0.0802µm

Fig. A.60: x = 255.4µm, σ = 4.78± 0.06µm Fig. A.61: x = 260.1µm, σ = 4.43± 0.07µm
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Fig. A.62: x = 265.6µm, σ = 3.82± 0.068µm Fig. A.63: x = 270.1µm, σ = 3.42± 0.07µm

Fig. A.64: x = 275.3µm, σ = 3.49± 0.11µm Fig. A.65: x = 280.4µm, σ = 3.96± 0.12µm

Fig. A.66: x = 285.6µm, σ = 5.77± 0.15µm Fig. A.67: x = 290.8µm, σ = 6.12± 0.23µm
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Fig. A.68: x = 300.8µm, σ = 7.08± 0.39µm Fig. A.69: x = 310.4µm, σ = 7.71± 0.27µm

Fig. A.70: x = 320.7µm, σ = 8.37± 0.26µm Fig. A.71: x = 330.7µm, σ = 9.21± 0.29µm

Fig. A.72: x = 340.6µm, σ = 10.21± 0.36µm Fig. A.73: x = 350.3µm, σ = 8.99± 0.53µm
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Fig. A.74: x = 360.6µm, σ = 12.71± 0.37µmFig. A.75: x = 380.9µm, σ = 13.05± 0.53µm

Fig. A.76: x = 400.6µm, σ = 16.65± 0.50µmFig. A.77: x = 420.5µm, σ = 20.49± 0.54µm

Fig. A.78: x = 440.1µm, σ = 24.33± 0.58µmFig. A.79: x = 460.2µm, σ = 27.46± 0.58µm
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Fig. A.80: x = 480.4µm, σ = 31.15± 0.63µmFig. A.81: x = 500.8µm, σ = 33.68± 0.53µm
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